Первоначальное признание ключевой роли принципа запрета Паули в строении белых карликов было сделано Р. Фаулером: R. H. Fowler, "On Dense Matter", Monthly Notices of the Royal Astronomical Society 87, no. 2 (1926): 114-22. Важность релятивистских эффектов признал также Субраманьян Чандрасекар в: Subrahmanyan Chandrasekhar, "The Maximum Mass of Ideal White Dwarfs", Astrophysical Journal 74 (1931): 81–82. Его результат, известный как предел Чандрасекара, показывает, что сжатие любой звезды с массой меньшей, чем примерно 1,4 массы Солнца, будет точно так же остановлено сопротивлением, возникающим из-за принципа запрета Паули. Впоследствии выяснилось, что в более массивных звездах сила сжатия сможет заставить электроны сливаться с протонами с образованием нейтронов. Этот процесс позволяет звездам сжиматься и дальше, но в какой-то момент нейтроны окажутся упакованы так плотно, что принцип запрета Паули снова вступит в игру — и, опять же, остановит дальнейшее сжатие. Результат — нейтронная звезда.
Хотя в среднем расстояния между галактиками растут, существуют галактики, которые располагаются достаточно близко друг к другу, чтобы их взаимное гравитационное притяжение заставляло их сближаться. Мы еще поговорим о том, что именно так обстоят дела с галактиками Млечный Путь и туманность Андромеды. S. Perlmutter et al., "Measurements of Q and Л from 42 High-Redshift Supernovae", Astrophysical Journal 517, no. 2 (1999): 565; B. P. Schmidt et al., "The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type IA Supernovae", Astrophysical Journal 507 (1998): 46.
Для полноты отметьте, что все объяснения ускоренного пространственного расширения, воспринимаемые всерьез, указывают на гравитацию. Но делают это они, в широком смысле, двумя разными способами. Либо поведение силы тяготения на космологических расстояниях отличается от того, что мы ожидаем увидеть на основании описаний Ньютона и Эйнштейна, либо источники тяготения отличаются от того, что мы ожидаем увидеть на основании традиционных представлений о веществе и энергии. Хотя оба подхода имеют право на существование, второй получил более полное развитие и нашел более широкое применение (при объяснении не только ускоренного расширения пространства, но и деталей в наблюдаемом реликтовом космическом излучении), так что именно этому подходу мы и будем следовать.
Плотность темной энергии составляет примерно 5 х 10 –10джоулей на кубический метр, или примерно 5 х 10 –10ватт-секунд на кубический метр. Для горения лампочки 100 Вт в течение одной секунды требуется в 2 х 10 11раз больше энергии, чем содержится темной энергии в одном кубическом сантиметре. Таким образом, этой энергии хватит на горение лампочки 100 Вт на протяжении около 5 х 10 –12секунды, или пяти триллионных долей секунды.
Если величина темной энергии не меняется во времени, то сама эта энергия идентична космологической постоянной Эйнштейна — отчаянному средству, которое Эйнштейн ввел в свои расчеты в 1917 г., когда понял, что уравнения общей теории относительности не в состоянии объяснить общепринятое мнение о том, что на больших масштабах Вселенная статична. Проблема, с которой столкнулся Эйнштейн, состояла в том, что статика требует равновесия, но гравитация, судя по всему, работает только в одном направлении. При отсутствии уравновешивающей силы статичная Вселенная казалась невозможной. К счастью, затем Эйнштейн понял, что с введением одного нового члена — той самой космологической постоянной — в уравнения общая теория относительности разрешает также отталкивающую гравитацию, которая способна уравновесить обычную притягивающую гравитацию и делает статичную Вселенную возможной. (Эйнштейн не учел, что такое равновесие неустойчиво — небольшое изменение размеров статичной Вселенной, ее увеличение или уменьшение, привело бы к нарушению баланса и, соответственно, ее расширению или сжатию.) Однако всего через десять с небольшим лет Эйнштейн узнал, что Вселенная расширяется. Осознав это, Эйнштейн совершил знаменитый шаг — исключил космологическую постоянную из своих уравнений. Но Эйнштейн выпустил джинна отталкивающей гравитации из бутылки общей теории относительности. Со временем отталкивающей гравитации суждено было сослужить космологии большую службу, обеспечив распирающее давление в момент Большого взрыва, а после этого предложив объяснение ускоренного расширения пространства. Как говорили многие, из всего этого видно, что даже неудачные идеи Эйнштейна хороши.
Robert R. Caldwell, Marc Kamionkowski, and Nevin N. Weinberg, "Phantom Energy and Cosmic Doomsday", Physical Review Letters 91 (2003): 071301. Abraham Loeb, "Cosmology with hypervelocity stars," Journal of Cosmology and Astroparticle Physics 04 (2011): 023.
Читать дальше
Конец ознакомительного отрывка
Купить книгу