Ньютоновская механика
В начале XVII века итальянский ученый Галилео Галилей (1564–1642) сделал первый шаг в понимании законов движения и гравитации. Он показал, что находящийся в свободном падении объект равномерно ускоряется, а также сформулировал принцип инерции: «Тело, которое не подвергается никакому воздействию, сохраняет свое движение по прямой линии с постоянной скоростью, если оно уже находится в движении, или остается неподвижным, если изначально находилось в состоянии покоя». Это утверждение кажется очевидным. Тем не менее со времен Аристотеля считалось, что для движения тела необходимо наличие внешнего воздействия. Вскоре, после Галилея, немецкий астроном Иоганн Кеплер (1571–1630) сформулировал законы, объясняющие движение планет. Первый из этих законов гласит, что планеты в своем движении вокруг Солнца описывают эллипсы, причем Солнце находится в одном из фокусов соответствующего эллипса. Позже англичанин Исаак Ньютон (1643–1727) заложил основы классической механики, основываясь на нескольких простых предположениях .
В качестве первого он принял принцип инерции Галилея. Второе предположение, или второй закон Ньютона, который часто называют основным законом динамики, гласит, что ускорение a →= dv →/ dt , приобретаемое материальной точкой и умноженное на ее массу m , равно сумме воздействующих на эту точку внешних сил F →:
Σ F → ext = ma →.
Этот закон дает нам основное уравнение движения и позволяет предсказать положение и скорость материальной точки в любой момент времени при условии, что мы знаем, где она находилась и какая у нее была скорость при t = 0.
Казалось бы, из второго закона Ньютона вытекает и первый, достаточно положить нулем сумму приложенных сил. Однако, принцип инерции имеет свой глубокий смысл, который придает ему статус закона. В современной формулировке он звучит так: «Существуют определенные системы отсчета, называемые галилеевыми , по отношению к которым движущийся объект сохраняет постоянную скорость, когда на него не действуют никакие силы, или сумма внешних сил равна нулю». Другими словами, первый закон Ньютона позволяет выбрать такие системы отсчета, в которых будут справедливы второй и третий законы.
Третий закон Ньютона, или принцип действия и противодействия, гласит: «При воздействии одного тела на другое первое испытывает ответное воздействие со стороны второго той же силы, но направленной противоположно».
И наконец, Ньютон сформулировал закон всемирного притяжения(или тяготения). Он научил будущие поколения, что два массивных тела притягиваются с силой, пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними (см. главу 5, «Ньютон – основатель современной физики»).
Законы механики Ньютона и сформулированный им закон всемирного тяготения с высокой точностью объяснили все проблемы механики, существовавшие в его время. Например, падение яблока на землю (см. илл. 2 в главе 5) и движение планет вокруг Солнца! Эти законы успешно применялись в астрономии для расчета траектории движения спутников вокруг планет и предсказали возвращение кометы Галлея в 1759 году. К сожалению, многие реальные проблемы часто настолько математически сложны, что возможно только их приблизительное решение. Это относится, например, к задаче о движении трех тел (скажем, Солнца, Земли и Луны) под воздействием взаимного гравитационного притяжения – ее точного решения просто не существует.
Титульный лист журнала Philosophiae Naturalis Principia Mathematica («Математические начала натуральной философии»), опубликованного в 1687 году, в котором Ньютон представил свои фундаментальные законы механики
В метеорологии, которая имеет дело с гораздо меньшими скоростями и намного большими расстояниями, для описания движения воздушных и водных масс сила Кориолиса должна учитываться обязательно. Действительно, вызванное силой Кориолиса отклонение y = Ω vt 2, введя пройденное расстояние x = vt, можно переписать как y = Ω х 2 /v . Если расстояние x составляет порядка ста километров, а скорость течения – около 20 км/ч, то отклонение y будет того же порядка, что и x . Например, отклонение из-за силы Кориолиса морского течения, скорость которого v = 6 м/с (около 22 км/ч), составляет порядка 10 км после пройденных 100 км в направлении начальной скорости! Далее в этой главе мы еще вернемся к этому вопросу.
Читать дальше
Конец ознакомительного отрывка
Купить книгу