Схема, которую я описал, с большим успехом применялась для объяснения свойств атомов и состоящих из них химических элементов. Потом появились другие квантовые теории, квантовые теории поля, которые описывали взаимодействия между элементарными частицами. Например, поведение электрона, позитрона и фотона можно описать в теории поля, называемой квантовой электродинамикой. Однако оказалось, что процесс вычислений в квантовой электродинамике чрезвычайно сложен. И тут, нежданно-негаданно, в конце 1940-х годов Ричард Фейнман сформулировал новый подход к квантовой теории. Он совершенно отличался от прежнего метода, используемого в квантовой механике.
Фейнмана не волновали волновые функции. Чтобы определить, с какой вероятностью система [14] Под системой в квантовой механике понимается, например, элементарная частица или совокупность частиц. – Прим. пер.
окажется в том или ином конечном состоянии, Фейнман предложил рассматривать все возможные траектории или истории, по которым она может эволюционировать из начального в конечное состояние. Затем нужно сложить все вклады от каждой траектории (истории) по специальным правилам. Этот метод иногда называется фейнмановским суммированием по траекториям.
Для иллюстрации этой идеи предположим, что вы хотите вычислить вероятность того, что квантовая частица, начав свой путь в лаборатории в Калтехе, попадет через какое-то время в детектор, установленный в лаборатории на Луне. Согласно методу Фейнмана, нужно рассчитать все вклады от всех возможных траекторий, по которым могла бы пройти частица, направляясь из одной лаборатории в другую. По пути она могла бы, например, залететь за Юпитер и вернуться обратно или покружить несчетное число раз вокруг Земли. И даже такие траектории, которые нарушают законы физики, надо сложить: частица могла бы облететь всю Вселенную со сверхсветовой скоростью или даже очутиться в прошлом, путешествуя из начального в конечное состояние. Большинство траекторий с нашей точки зрения выглядит нереально. Фейнмановские правила однако гласят, что траектория по прямой линии вносит наибольший вклад, а «абсурдные» пути почти ничего не привносят в суммарный результат. И тем не менее, существует бесконечный набор таких путей, и от каждого из них что-то прибавится – не важно, будет это «что-то» маленьким или большим [15] Макроскопические тела, с которыми мы имеем дело в повседневном мире, являются совокупностью огромного количества молекул. Для таких тел вклады от большинства траекторий гасят друг друга и остается траектория, которая подчиняется законам Ньютона. Физики сказали бы, что происходит «декогеренция путем сопряжения до внутренних степеней свободы» (См.: Todd A. Brun and Leonard Mlodinow. Decoherence by coupling to internal vibrational modes. /Physical Review A 94, 2016).
.
Стивен, без сомнения, восторгался элегантными идеями Фейнмана. Но он и сам был такой же «белой вороной», как Фейнман – любил будоражить окружающих своими идеями, а потом прилагать все силы, чтобы убедить их в своей правоте. Когда Фейнман впервые рассказал о своем методе на конференции в 1948 году, он встретился с таким же непониманием и сопротивлением коллег, что и Стивен, впервые заявивший о своем излучении черных дыр. Такие выдающиеся физики, как Нильс Бор, Эдвард Теллер и Поль Дирак, заявили, что метод Фейнмана – полная ерунда.
Взгляды Фейнмана, конечно, были принципиально новыми; его теория на первый взгляд могла показаться даже скандальной. Никто не хотел всерьез думать о траекториях частиц, которые совершают зигзаги по всей Вселенной. Фейнман, как и Стивен, в своих математических выкладках «срезáл углы» и пренебрегал математической строгостью. Например, при суммировании по траекториям приходилось нарушать некоторые фундаментальные математические принципы, но Фейнмана это мало волновало. Как и Стивен, Фейнман предпочитал мыслить образами, а не уравнениями, и этот не знакомый для других физиков подход прибавлял им скептицизма, подливая масла в огонь. «Это было похоже на магию», – сказал как-то физик Фримен Дайсон.
Но Дайсон с коллегами в конце концов убедились, что методу Фейнмана можно дать строгое математическое обоснование и что – несмотря на то, что его теория рисует другую картину происходящего – ее предсказания относительно результата экспериментов всегда совпадают с теми, которые следуют из прежних формулировок квантовых теорий. Фейнман не предлагал новых законов в квантовой физике. То, что он предлагал, – это новый взгляд на квантовую физику, новый способ понимания квантовой Вселенной, который привел к новым невероятным предвидениям.
Читать дальше
Конец ознакомительного отрывка
Купить книгу