Простота, таким образом, имеет сугубо относительную ценность. Мы можем искать теорию, которая была бы проще, чем какая-то другая, но не можем начать конструировать теорию, основываясь исключительно на принципе простоты.
Почти излишне говорить, что из двух теорий, описывающих одно и то же, ученые в конце концов выбирают ту, что проще, ибо кому же хочется делать свою жизнь сложнее, чем необходимо? В прошлом иногда бывали задержки с принятием такого решения, когда простота вступала в конфликт с другими заветными идеалами, такими как красота движения планет по круговым орбитам. Но лень всегда побеждала, по крайней мере пока.
Почти излишне – поскольку простота непрерывно играет в перетягивание каната с точностью. Дополнительные параметры (а значит, меньшая простота) обычно позволяют лучше описать данные, и мы можем провести статистическую оценку, чтобы выяснить, оправдывает ли улучшенное соответствие наблюдательным данным введение этих параметров. Можно спорить насчет плюсов и минусов разных оценок, но для наших целей достаточно сказать, что поисками расширенных теорий, пусть и противоречащих принципу простоты, занимается особая область науки – феноменология [56] Не путать с областью философии, носящей то же имя. Название – это единственное, что у них есть общего.
.
Объективно измерять простоту помогает так называемая вычислительная сложность, которая определяется длиной кода компьютерной программы, производящей вычисления [57] С длиной кода связана так называемая колмогоровская сложность. А вычислительная сложность определяется обычно временем работы программы (временна́я сложность) либо необходимым объемом памяти (пространственная сложность). – Прим. науч. ред.
. Вычислительная сложность, в принципе, измерима для любой теории, которая может быть переведена в компьютерный код. Сюда относятся и теории из современной физики. Но сами мы не компьютеры, так что вычислительная сложность – не та оценка, которую мы в действительности используем. Человеческое понимание простоты преимущественно основывается на легкости в применении, а она, в свою очередь, тесно связана с нашей способностью уловить идею и удерживать ее в голове, раскручивая, до тех пор, пока не родится научная статья.
Чтобы добиться простоты новых, предполагаемых законов природы, теоретики сейчас стараются минимизировать набор допущений. Этого можно достичь, сокращая число параметров, полей или вообще аксиом теории. На сегодня самые распространенные способы сделать это – добавление симметрий или объединение.
Эйнштейн тоже мечтал о том, чтобы фундаментальная теория не содержала необъяснимых параметров:
…Природа устроена так, что ее законы в большой мере определяются уже чисто логическими требованиями настолько, что в выражения этих законов входят только постоянные, допускающие теоретическое определение (то есть такие постоянные, что их численных значений нельзя менять, не разрушая теории) 70 [58] Эйнштейн А. Автобиографические заметки // Собрание научных трудов. Т. 4. М.: Наука, 1967. – Прим. перев.
.
Эта мечта и по сей день направляет исследования. Однако мы не знаем, обязательно ли более фундаментальные теории должны быть проще. Предположение, что более фундаментальная теория должна быть еще и проще – по крайней мере восприниматься проще – это надежда, а не что-то такое, чего у нас на самом деле есть причины ожидать.
Естественность
В отличие от простоты, с позиций естественности оценивается не количество допущений, а их тип. Это попытка избавиться от человеческого фактора – требование, чтобы в «естественной» теории не использовались тщательно подобранные допущения.
Техническая естественность отличается от общей тем, что применяется только к квантовым теориям поля. Но у них обеих одинаковый фундамент: предположений, которые вряд ли могли быть выполнены случайно, нужно избегать.
Правда, критерий естественности бесполезен без других допущений – допущений, которые требуют делать необъяснимый выбор, тем самым возвращая в игру избирательный подход. Проблема в том, что у чего-либо есть бесконечное множество разных способов оказаться случайным, а потому отсылка к случайности уже сама по себе требует выбора.
Давайте разберем такой пример. Если у вас есть обычный игральный кубик, вероятность выпадения любого из чисел на нем одинакова: 1/6. Но если кубик ваш причудливой формы, то вероятность для каждого числа может быть какая-то своя. Мы говорим, что кубик причудливой формы имеет иное «распределение вероятностей», то есть функцию, зашифровывающую вероятности каждого возможного исхода броска. Функция может быть любой, лишь бы сумма вероятностей всех исходов давала 1.
Читать дальше
Конец ознакомительного отрывка
Купить книгу