Не ведая, какие мысли бродят в моей голове, Нима продолжает: «Эксперимента нет, и вы просто сидите сложа руки и разглагольствуете о красоте, элегантности и математическом очаровании. И звучит все это как социологический вздор. Я считаю, что такое впечатление просто в корне неверно – но неверно в корне по интересной причине. И эта причина отличает физику высоких энергий от большинства других научных направлений».
«Действительно, – объясняет он, – в большинстве остальных областей науки для проверки, правильна идея или ошибочна, требуются новые эксперименты. Но наша область так солидна, что мы обложены неимоверным количеством ограничений, порожденных прежними экспериментами. Ограничений столь сильных, что они перечеркивают почти все, что вы можете попробовать изобрести. Если вы честный физик, 99,99 % ваших идей, даже хороших, будут опровергнуты, и не новыми экспериментами, а заранее – несовместимостью со старыми. Вот что по-настоящему сильно отличает нашу область исследований и дает нам внутреннее представление о том, что верно или неверно, до проведения новых экспериментов. Поэтому, в противоположность ощущению нашего гипотетического маловерного дилетанта, мнение, будто можно втирать всем очки, ошибочно. Это невероятно трудно».
Кому вы рассказываете о трудностях, думаю я и киваю.
Несмотря на успех Стандартной модели, физики ее недолюбливают. Митио Каку называет ее «уродливой, надуманной» [47] Каку М. Гиперпространство: научная одиссея через параллельные миры, дыры во времени и десятое измерение . М.: Альпина Паблишер, 2017. – Прим. перев.
, Стивен Хокинг – «уродливой и случайной», Мэтт Страсслер хулит ее как «уродливую и нелепую», Брайан Грин жалуется, что она «обладает слишком большой гибкостью», а Пол Дэвис считает, что «от нее несет душком нерешенной проблемы», ибо «тот неуверенный способ, каким она объединяет электрослабое и сильное взаимодействия» – «уродливое свойство» 58. Я все еще в поисках физика, кому Стандартная модель нравится.
Что же делает Стандартную модель такой уродливой? Худшее ее прегрешение: множество параметров – чисел, за которыми не стоит более глубокого объяснения, – и многие из них нисколечко не близки к 1. Мы уже обсуждали, какая головная боль эта масса бозона Хиггса. Но есть и еще подобные досадные числа, начиная с масс других элементарных частиц или, соответственно, отношений этих масс к массе хиггсовского бозона (ведь беспокоят нас только безразмерные величины). Такое отношение масс принимает значения вроде 0,00000408 для электрона или примерно 1,384 для истинного кварка. Никто не в силах объяснить, почему эти отношения масс таковы.
Между тем отношения масс также не кажутся и абсолютно случайными, и это заставляет физиков верить, что тому должно быть какое-то объяснение. Например, все три нейтрино очень легкие, сумма их масс более чем в 10 11раз меньше массы бозона Хиггса. Поколения фермионов имеют массы, отличающиеся, грубо говоря, в десятки раз. А есть еще странная формула Коидэ, связывающая массы электрона, мюона и тау-лептона 59. Сумма этих масс, деленная на квадрат суммы квадратных корней из этих масс, равна 2/3 вплоть до пятого знака после запятой. Почему? Похожие нумерологические соотношения были найдены и для других частиц, хотя и с меньшей степенью точности. Они вынуждают нас подозревать, что мы упускаем какое-то более глубокое объяснение.
Помимо масс есть еще так называемые матрицы смешивания. Перемещаясь из одной точки в другую, некоторые частицы могут превращаться – «осциллировать» – в другие частицы. Вероятности таких событий записываются в матрицах смешивания [48] Вообще матрицы смешивания содержат амплитуды вероятностей, а не сами вероятности. Есть одна матрица смешивания для нейтрино и одна для отрицательно заряженных кварков. Последняя известна как матрица Кабиббо – Кобаяши – Маскавы (или CKM -матрица).
. Опять-таки числа в этих матрицах пока необъяснимы, но и не выглядят совсем уж случайными. Некоторые частицы регулярно превращаются в другие, тогда как иные – не особенно, хотя могли бы. Почему это так? Мы не знаем.
Следующая проблема в том, что в Стандартной модели слишком много симметрии! Речь идет о так называемой CP -симметрии. Преобразование CP -симметрии – это комбинация изменения электрического заряда частицы на противоположный (отсюда буква C в названии, от слова charge ) и трансформации частицы в ее зеркальное отражение ( P , от слова parity , «четность»). Если произвести это преобразование, уравнения слабого ядерного взаимодействия меняются, то есть электрослабое взаимодействие этой симметрии не подчиняется. Квантовая электродинамика не может нарушать эту симметрию. Сильное взаимодействие может, однако по непонятным причинам не делает этого. Если бы сильное взаимодействие нарушало CP -симметрию, это отражалось бы, например, на распределении электрического заряда в нейтроне, а мы такого не наблюдаем.
Читать дальше
Конец ознакомительного отрывка
Купить книгу