Сегодня астрономы больше не запечатлевают изображения на фотопластинках, а используют ПЗС-матрицы, электронные сердца цифровых камер. Современные телескопы так чувствительны, что способны регистрировать единичные фотоны, а выдержки иногда достигают нескольких миллионов секунд (больше недели) [41] Вероятно, самый поразительный пример – Hubble Ultra Deep Field . См.: Beckwith S. V. W. et al. 2006. The Hubble Ultra Deep Field . Astron. J. 132: 1729–1755. arXiv: astro-ph/0607632. Или выполните поиск в Google по запросу Hubble Ultra Deep Field .
. И конечно же, телескопы по-прежнему становятся все больше: теперь у нас есть особые механизмы, которые двигают огромные зеркала, оснащенные тысячами маленьких приводов, чтобы предотвращать деформации из-за сейсмических и температурных колебаний. Суперкомпьютеры и головокружительно точное измерение времени позволили телескопам, отстоящим друг от друга на большие расстояния, работать сообща, что, по сути, создает еще бо́льшие телескопы. Чтобы сладить с атмосферными флуктуациями, размывающими изображения, астрономы теперь используют так называемую адаптивную оптику, компьютерную программу, перенастраивающую телескоп в ответ на атмосферные изменения. Или вообще исключают любые искажения из-за атмосферы, устанавливая телескопы на спутниках и запуская в открытый космос.
Мы расширили свои возможности от видимого света до длинноволнового излучения инфракрасного, микроволнового и радиодиапазонов и в другую сторону до коротковолнового рентгеновского и гамма-излучения. И свет – не единственный связной, используемый нами сегодня для исследования космоса. Другие частицы, включая нейтрино, электроны и протоны, тоже рассказывают свои истории об источниках своего происхождения и о перипетиях на своем пути к Земле. Самое последнее достижение астрономии: первая прямая регистрация гравитационных волн, возмущений самой ткани пространства-времени. Эти волны несут информацию о зачастую суровых событиях, что породили их, – таких как слияние черных дыр.
Благодаря комбинации всех этих методов астрономы дерзнули заглянуть в прошлое во времена, когда Вселенной было лишь 300 000 лет от роду, и в дали порядка 10 миллиардов световых лет от нас. Данные коренным образом отличаются от тех, что дает физика в коллайдерах. Но для нас, теоретиков, задача та же: объяснить измерения.
Согласованная космологическая модель
Наше лучшее на сегодняшний день объяснение данных, полученных астрономами, – так называемая согласованная космологическая модель [42] Некоторые космологи называют согласованную космологическую модель «стандартной космологической моделью». Я не буду использовать это название, чтобы избежать путаницы со Стандартной моделью физики элементарных частиц, про которую обычно говорят просто «Стандартная модель».
. В ней используется математика общей теории относительности, согласно которой мы живем в трех пространственных измерениях и одном временно́м, да к тому же это пространство-время искривлено.
Я знаю, трудно представить себе искривленное четырехмерное пространство-время – дело тут не только в вас. К счастью, для многих целей двумерные поверхности служат неплохими аналогиями. Специальная теория относительности обращается с пространством-временем как с плоским листом бумаги. Тогда как в общей теории относительности пространство-время имеет возвышения и впадины.
Продолжим эту аналогию: если у вас есть карта гористой местности без отметок высоты, серпантины на ней будут выглядеть абсурдно. Но если вы знаете, что там горы, то понимаете, почему дороги столь извилисты – при таком ландшафте это наилучшее решение. Вот и то, что мы не видим искривления пространства-времени, сродни обладанию картой без отметок высоты. Если бы вы могли видеть искривления пространства-времени, вы бы поняли, что для планет в высшей степени целесообразно обращаться вокруг Солнца. Это лучшее, что они могут.
Общая теория относительности основывается на тех же симметриях, что и специальная. Разница в том, что в общей теории относительности пространство-время становится податливым: оно откликается на энергию и вещество, искривляясь. В свою очередь, перераспределение энергии и движение вещества зависят от кривизны пространства-времени.
Но кривизна меняется не только от точки к точке, а еще и со временем. Стало быть, самое важное, чему нас научила общая теория относительности, состоит в том, что Вселенная не вечно неизменна, она расширяется в ответ на вещество, и по мере этого расширения вещество становится все более тонко распределенным.
Читать дальше
Конец ознакомительного отрывка
Купить книгу