Вот как это примерно выглядит: когда я был ребенком, я любил трясти коробки с моими новогодними подарками. Когда я тряс коробку, содержимое болталось из стороны в сторону (часть его разбивалась) и по сути переходило из одного микросостояния в другое. Я никогда не мог видеть все эти встряски (и все эти «микросостояния»), зато я мог видеть среди всех этих трясок то, что никогда не менялось — коробку в красивой обертке с бантиком наверху: ее «макросостояние» всегда было одинаковым, хотя «микросостояния» внутри коробки изменялись с каждым потряхиванием.
Различия между макросостоянием и микросостояниями, составляющими его, позволяют нам прийти к более фундаментальному пониманию энтропии, большему, чем «отношение тепла к температуре». Больцман продемонстрировал, что чем больше микросостояний доступно системе, тем выше ее энтропия [97]. Вспомним, что спонтанный процесс возникает без помощи извне или приложения работы; он просто происходит. Согласно Клаузиусу, спонтанный процесс возникает, поскольку он предпочтителен с точки зрения энтропии ; это то направление, которое приводит к увеличению энтропии и поэтому является предпочтительным.
Используя концепцию микросостояний Больцмана, мы также можем утверждать следующее: спонтанный процесс возникает, потому что он приводит к появлению большего количества микросостояний. Ярчайший тому пример — смешивание жидкостей. Представьте, что происходит, когда в чашку с кофе наливают сливки. Мы можем вообразить, как сливки собираются наверху чашки, никогда полностью не смешиваясь с кофе. Однако второе начало уверяет нас, что в природе кофе и сливки будут стремиться увеличить их общую энтропию.
Таким образом, вместо того чтобы держаться вместе наверху чашки, сливки движутся через кофе. Этот процесс диффузии дает сливкам доступ к гораздо большему пространству в чашке, чем если бы они оставались наверху. Более того, то место наверху чашки, где раньше находились сливки, теперь также доступно для кофе. Получается, что диффузия открыла и сливкам, и кофе доступ к большему пространству в чашке. Это означает, что у обоих возникло больше микросостояний, и в результате энтропия системы максимизировалась.
Итак, означает ли это, что вы никогда не увидите, как сливки спонтанно отделяются от кофе? Если коротко, то да. Причина этого в том, что существует только одно микросостояние, в котором сливки и кофе абсолютно разделены, и множество микросостояний, где они смешиваются (в той или иной мере). В конце концов, это связано с вероятностью: чем больше способов ведет к возникновению явления (смешивания) по сравнению с другим (отделением), тем более оно вероятно. В нашем примере вариантов смешивания гораздо больше, поэтому оно более вероятно (точно так же в лотерее гораздо больше комбинаций, которые ведут к проигрышу, чем к выигрышу).
Однако Больцман никогда не говорил, что шансов нет . По сути, существует ненулевая вероятность того, что однажды кофе и сливки не смешаются. Но этот шанс настолько мал, насколько много способов смешения. Таким образом, когда встречаются частицы кофе и сливок, сталкиваясь друг с другом, они проводят больше времени в микросостояниях , результатом чего является смешанное макросостояние (физическое состояние), которое мы видим.
Давайте рассмотрим последний пример — нечто более понятное, чем сталкивающиеся частицы, которые создают невидимые микросостояния. Рассмотрим колоду карт.
Первое, что вы заметите в новой колоде карт — все карты расположены по порядку: карты каждой масти следуют одна за другой, от туза до короля. В терминах, о которых мы говорили, это будет «упорядоченное» микросостояние колоды. Теперь представим, что мы поместили нашу колоду в устройство для тасования карт. Когда карты тасуются, колода изменяет начальное микросостояние на другое, потом на третье и так далее. Мы можем представить нечто подобное в случае с газом, где постоянное движение атома вынуждает систему «перетасовывать» микросостояния.
Итак, остановим тасовщик и посмотрим на карты. Как мы видим, текущее микросостояние — «беспорядочное». Все масти перемешаны друг с другом, последовательность нарушена — ничего общего с тем, какой была колода до перемешивания. Положим карты в тасовщик опять и продолжим перемешивать, периодически проверяя новые микросостояния. Конечно, мы предполагаем, опираясь на опыт, что каждый раз, когда мы наблюдаем новое микросостояние, карты находятся в беспорядке. Сколько бы мы ни перемешивали карты, скорее всего, они не вернутся в исходное микросостояние. Нельзя сказать, что это невозможно — скорее, существует гораздо больше способов перейти колоде в новые микросостояния, а не в первоначальное. Понятно, что у колоды карт куда больше беспорядочных микросостояний , чем упорядоченных. Поэтому неупорядоченное макросостояние , или фаза , обладает большей энтропией, чем упорядоченное, и поэтому его возникновение более предпочтительно.
Читать дальше
Конец ознакомительного отрывка
Купить книгу