Первую такую попытку Клаузиус предпринял в 1862 году, представив «дезинтеграцию», которая должна была стать мерой значительности разделения между атомами и молекулами в объекте. В 1870 и в 1871 годах он публикует работы, которые должны были описать второе начало с точки зрения механики. На его последнюю работу быстро откликнулся Больцман, заявив в своей работе, что Клаузиус по сути повторил его опыт 1866 года. В следующей работе в 1872 году Клаузиус любезно ответил, что «чрезвычайный спрос» на его работы затрудняет ознакомление с текущей научной литературой. Тем не менее все эти подходы были ошибочны, и хотя Клаузиус не достиг успеха со статистической природой второго начала, это смог сделать Больцман, продолжив тем самым работу, начатую Максвеллом.
В 1868 году Больцман не упоминал работу Максвелла, скорее всего, потому, что он все еще учил английский (в частности, чтобы иметь возможность прочитать оригинал работы Максвелла по электромагнитной теории), чем из-за недосмотра с его стороны. Однако спустя два года после этой неудавшейся попытки, и уже будучи знакомым с работой Максвелла по распределению скоростей атомов газа, Больцман нашел то, что искал — объяснение энтропии и второго начала с точки зрения вероятности и статистики.
Вспомните, что закон Максвелла описывает возможный диапазон, или распределение скоростей атомов в идеальном газе в равновесии при определенной температуре. Мы уже выяснили, что «энергия движения» является кинетической и объект, обладающий скоростью, должен находиться в движении и, следовательно, обладать кинетической энергией. Следовательно, распределение Максвелла также описывает распределение атомов идеального газа по кинетической энергии в состоянии равновесия. Другими словами, Максвелл описывает распределение кинетической энергии идеального газа в равновесии — вот что понял Больцман. В 1868 году Больцман смог показать, что идея распределения может быть расширена на полную энергию системы в равновесии — и кинетическую, и потенциальную. Фактически, применяя более общий подход к проблеме, Больцман также смог вывести распределение Максвелла для находящейся в равновесии системы атомов идеального газа.
Итак, пока атомы газа данной системы движутся, сталкиваясь друг с другом и со стенками контейнера, внутри которого они находятся, когда система пребывает в равновесии, система в целом принимает значения энергии из диапазона, задаваемого распределением Больцмана . Каждая из этих энергий описывает систему как пребывающую в некотором микросостоянии. Каждое микросостояние описывается всеми положениями атомов газа и соответственно их скоростями в данный момент времени. С течением времени система переходит из одного микросостоянии в другое и, если дать ей достаточно времени, испытает все доступные микросостояния. Однако она не будет переживать каждое микросостояние с одной и той же частотой; более вероятные состояния будут возникать чаще. Согласно распределению Больцмана, микросостояния с более низким уровнем энергии — более вероятные, а вероятность их возникновения определяется вероятностью Больцмана [92].
Распределение Больцмана, вероятность Больцмана и микросостояния — основополагающие идеи статистической механики , которая позволяет нам правильно рассчитать определенные параметры системы, причем не только системы атомов газа, но и всех классических систем (в отличие от квантовых ). Такие величины, как давление и температура, можно рассчитать, иногда с помощью компьютерного моделирования. Итак, несмотря на то что мы не можем видеть атомы, их хаотичное движение и возникающие в результате микросостояния [93], с помощью методов Больцмана и аналогичных им мы можем правильно описать многие вещи, которые мы наблюдаем в повседневной жизни.
Когда вы смотрите на какой-либо объект, вы наблюдаете его физическое состояние, или макросостояние [94]. Опять-таки, давайте снова вспомним о шарике, наполненном воздухом. Вы не можете видеть воздух, в котором молекулы движутся, сталкиваясь друг с другом и со стенками шарика. Вы видите форму (объем) шарика и можете измерить его температуру. В этом случае макросостояние вашей системы [95]прекрасно описывается свойствами, которые вы можете наблюдать и измерить: температурой и объемом [96]. Тем не менее микросостояния, возникающие в результате столкновения молекул, скрыты от глаз.
Таким образом, множество микросостояний являются скрытыми состояниями системы, в то время как макросостояние — это состояние системы в целом, с физическими свойствами, которые мы можем увидеть и измерить. В некотором смысле макросостояние — это грубый, нечеткий вариант системы.
Читать дальше
Конец ознакомительного отрывка
Купить книгу