Например, при комнатной температуре предметы испускают излучение преимущественно в инфракрасной области электромагнитного спектра, хотя наши глаза не позволяют нам непосредственно его наблюдать. Однако оно лежит в основе работы тепловизоров , использующихся в некоторых очках ночного видения, позволяющих четче видеть предметы в темное время суток. Другой знакомый пример — лампа накаливания, нить которой нагрета (до температуры около 3000 K), чтобы давать видимый свет. Однако, помимо видимого света, она излучает в инфракрасных и красных областях электромагнитного спектра, который составляет большую часть ее излучения.
При прохождении света через дифракционную решетку разные цвета в нем (то есть световые волны разных частот, или длин ) разделяются. Таким образом, луч света, испускаемого атомом, в результате дает спектр , который служит «отпечатком пальцев» для этого определенного типа атома, или химического элемента.
Радуга образуется, когда Солнце появляется после дождя или светит во время дождя. Капельки воды, находящиеся в воздухе, разделяют солнечный свет на разные цвета, которые его составляют, — они и видны как радуга. Это явление отличается от дифракции и включает в себя как преломление, так и полное внутреннее отражение света в капле.
Следует признать, что я только предлагаю довольно вероятную схему, по которой Кирхгоф мог провести свой эксперимент.
Вы можете поспорить, что картошка снова поглощает часть испускаемого ею излучения, вследствие этого полное количество энергии поглощенного теплового излучения равно вышеупомянутой части энергии, испущенной индейкой, плюс количество энергии, снова поглощенной самой картошкой. Здесь я решил не принимать во внимание возможность повторного поглощения, поскольку окончательное математическое соотношение, которое мне хотелось бы обсудить, не изменится.
Второй закон требует, чтобы каждый объект в системе (например, индейка и картошка) по отдельности излучал и поглощал с одной и той же скоростью. Первый закон всего лишь требует, чтобы полная излученная энергия и полная поглощенная энергия были равны друг другу. Однако соблюдение только первого закона допустит следующее развитие событий: (в системе двух объектов) один из них будет только излучать, тогда как другой — только поглощать. Таким образом, излучающий объект будет продолжать охлаждаться, а поглощающий — нагреваться. Другими словами, мы имеем передачу тепла от холодного объекта к более теплому, что является строгим нарушением второго начала термодинамики. Эту катастрофу можно предотвратить заключением, что, когда система находится в равновесии, каждый объект должен излучать и поглощать с одной и той же скоростью.
Поразительно, что это уравнение не зависит от формы или состава объектов, или ящика.
Двое из его братьев и сестер были от первого брака его отца.
Стоит отметить, что в 1879 году Йозеф Стефан (1835–1893), основываясь на экспериментальных данных, выдвинул предположение, что полная энергия, излучаемая горячим объектом, пропорциональна T 4. В общем случае это утверждение неверно, и в 1884 году Больцман получил точный результат, показав, что зависимость от T 4, выдвигаемая Стефаном, применима лишь к абсолютно черному телу, а не к любому горячему объекту.
В своей «Научной автобиографии» 1948 года Планк отмечал, что близкая дружба его отца с профессором физики Кильского университета внесла свою лепту в его назначении на должность.
Возможно, Гельмгольц помог Планку в получении должности.
Во всей своей научной работе Планк использовал эту концепцию резонаторов, иногда рассматривая набор резонаторов, а иногда — только один.
На самом деле всякая неравновесная система, стремящаяся к равновесию, делает это необратимо.
Выражение для W в комбинаторной форме имеет вид:
W = ( N — 1 + P )! / P ! ( N — 1)!
В модели Больцмана ему равнялось суммарное число разных способов, которыми P различимых порций энергии могут быть распределены по системе N различимых атомов газа, то есть полное число микросостояний системы.
Это равносильно утверждению, что система состоит из N независимых резонаторов. В этом случае полная энтропия системы будет суммой энтропий всех резонаторов, или N × S 1, где S 1— энтропия одного резонатора. Более того, данная аналогия является совершенно точной, поскольку Планк рассматривал свою систему в состоянии равновесия. Поэтому систему из N независимых резонаторов, находящуюся в равновесии, можно сравнить с равновесной системой, состоящей из всего лишь одного резонатора.
Читать дальше
Конец ознакомительного отрывка
Купить книгу