Скотт Бембенек - Механизм Вселенной - как законы науки управляют миром и как мы об этом узнали

Здесь есть возможность читать онлайн «Скотт Бембенек - Механизм Вселенной - как законы науки управляют миром и как мы об этом узнали» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Обладатель ученой степени в области теоретической химической физики, старший научный сотрудник исследовательской группы по разработке новых лекарств Скотт Бембенек в лучших традициях популярной литературы рассказывает, как рождались и развивались научные теории. Эта книга — уникальное сочетание науки, истории и биографии. Она доступным языком рассказывает историю науки от самых ранних научных вопросов в истории человечества, не жертвуя точностью и корректностью фактов. Читатель увидит: — как энергия, энтропия, атомы и квантовая механика, составляющие основу нашей Вселенной, управляют миром, в котором мы живем; — какой трудный путь прошло человечество, чтобы открыть законы физических явлений; — как научные открытия (и связанные с ними ученые) сформировали мир, каким мы его знаем сегодня.

Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

10

До середины 1609 года Галилео уделял науке о движении особое внимание. Затем Галилео узнал о подзорной трубе (предшественнике телескопа), созданной голландским изобретателем в 1608 году, и построил свою собственную, улучшенную версию. Проблема движения вновь привлекла его внимание в 1633 году, когда он начал работать над «Диалогами о двух системах мира». В них он излагает результаты своих исследований сопротивления материалов и движения объектов. Галилео рассматривал «Диалоги» как лучшую из всех своих работ, наследие почти тридцати лет его исследований.

11

Первую известную конкурирующую теорию сформулировал математик и астроном Гиппарх (ок. 190–120 до н. э.) спустя примерно два века после Аристотеля. В 1553 году Джамбаттиста Бенедетти (1530–1590) стал первым, кто предложил доказательство того, что объекты, сделанные из одинакового материала и отличающиеся весом, будут падать с одинаковой скоростью в одинаковой среде (например, в воздухе).

12

В 1586 году Симон Стевин (1548–1620) показал, что два тела различного веса падают с одинаковой скоростью.

13

Период маятника — время, которое требуется маятнику, чтобы совершить колебание и вернуться к исходному положению (например, слева направо и справа налево). Когда мы говорим о времени падения маятника, мы имеем в виду время, которое требуется для того, чтобы переместиться в самую низкую точку колебания. Это позволяет нам проводить сравнения со временем свободно падающих объектов или объектов, двигающихся по наклонной плоскости.

14

Мы рассматриваем случай, когда амплитуда была мала, но это верно для всех амплитуд.

15

Поскольку объект катится по наклонной плоскости, его полное движение может быть разделено на вращательное движение центра масс и поступательное перемещение центра масс. Даже при том, что мы говорим об объекте, катящемся по наклонной плоскости, я скорее не рассматриваю вращательную часть движения, а сосредотачиваюсь только на изменении высоты объекта от начала движения и до конца, что является аспектом его поступательного перемещения.

16

Покойный Стиллмен Дрейк, канадский историк науки и эксперт по Галилео, предположил, что Галилео первоначально использовал другое средство для измерения времени движения объектов по наклонной плоскости. И отец, и брат Галилео были музыкантами, и Галилео также хорошо играл на лютне; возможно, Галилео использовал свои музыкальные способности. Он разместил тянущиеся ленты — или, в его случае, «струны» из кишок — вокруг наклонной плоскости, благодаря чему всякий раз, когда катящийся вниз объект касался их, возникал звук. Струны были расположены на одинаковом расстоянии друг от друга таким образом, что Галилео слушал, как катящийся объект касается их. Чтобы расположить струны таким образом, он использовал, вероятно, врожденное чувство ритма (может, топал ногой, когда слышал звук струны, или напевал ритм) и корректировал их позиции так, чтобы каждый лад соответствовал фиксированному временному интервалу. Теперь оставалось измерить расстояние от исходного положения шара до каждой струны, что Галилео мог определить очень точно. Учитывая, что тогда часы не могли измерить период времени точнее, чем секунда, этот метод, скорее всего, был более точным.

17

В обоих случаях общая форма математического уравнения, связывающего время и высоту, одинакова: h = 1/2 at 2, где h — высота, на которую опустился (или скатился) объект от его изначальной точки, а — ускорение и t — время. Другими словами, высота здесь представлена как время, возведенное в квадрат. Это — закон падения Галилео, который он вывел, основываясь на своих экспериментах с наклонной плоскостью. В свободном падении ускорение происходит за счет силы тяжести, которая равна 9,8 м/с 2, h = 4,9 м/с 2× t 2. Однако, если мы рассматриваем наклонную плоскость, ускорение происходит медленнее, чем при свободном падении. Кроме того, при движении по наклонной плоскости ускорение зависит от угла наклона плоскости по отношению к горизонтальной поверхности; для свободного падения угол наклона составляет 90°.

18

Поэтому нам нужны оба эти направления, чтобы полностью описать движение катящегося (падающего) объекта.

19

Интересно отметить, что в работе «В движении», которая отражает научную деятельность Галилео во время его профессорства в Пизе (1589–1592), Галилео думал, что скорость движения объекта на наклонной плоскости обратно пропорциональна длине наклона. Тот факт, что он не мог правильно рассчитать движение на наклонной плоскости (так как он не признал важности ускорения из-за силы тяжести), вероятно, был причиной, по которой Галилео никогда не издавал это труд. Однако к тому времени, когда он написал «Диалоги о двух главнейших системах мира», Галилео уже пришел к верным выводам: для постоянного ускорения скорость v падающего объекта пропорциональна времени t . Другими словами, v ~ t . Поэтому скорость падающего объекта увеличивается, когда высота уменьшается.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали»

Представляем Вашему вниманию похожие книги на «Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали»

Обсуждение, отзывы о книге «Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x