Рис. 67.Движение электронного луча в ультразвуковом микроскопе
Согласно расчетам, в ультразвуковом микроскопе возможны увеличения в несколько десятков тысяч раз.
Для «освещения» рассматриваемого в ультразвуковой микроскоп предмета пригодны как непрерывные ультразвуковые волны, так и отдельные ультразвуковые импульсы.
Ультразвуковому микроскопу можно придать иные конструкции, сохранив принцип его действия. В одной из них ультразвуковое изображение получают на внешней поверхности пьезоэлектрической пластинки 1 (рис. 68), внутренняя поверхность которой освещается равномерно ультрафиолетовыми лучами 3 . Под действием ультрафиолетовых лучей с внутренней поверхности пластинки, являющейся дном вакуумной трубки 2 , вылетают электроны, которые ускоряются электрическим полем и, пройдя через специальные магнитные и электрические линзы, падают на флуоресцирующий экран 5 . На экране будет видно изображение источника электронов — пьезоэлектрической пластинки 1 . Выбивание электронов ультрафиолетовыми лучами зависит от величины зарядов, возникших на пластинке под действием падающих на нее ультразвуковых колебаний. Распределение интенсивности последних в свою очередь определяется тем акустическим изображением, которое получается на приемной пластинке. Поэтому на экране 5 мы увидим увеличенным рассматриваемый предмет.
Рис. 68.Схема ультразвукового микроскопа с магнитной линзой
Не переставая совершенствовать свое изобретение, С. Я. Соколов значительно упростил конструкцию ультразвукового микроскопа.
Новая конструкция
Как и раньше, рассматриваемый предмет 2 помещается в жидкость 4 и «освещается» однородным ультразвуковым пучком, посылаемым кварцевой пластинкой 1 (рис. 69). Отразившись от предмета, ультразвуковые лучи попадают на зеркало 3 , которое отбрасывает изображение рассматриваемого предмета на поверхность жидкости. Когда ультразвуковые лучи достигают поверхности жидкости, они вызывают появление на ней характерной ряби. Если пользоваться ультразвуковым лучом с малой длиной волны, рябь получается очень равномерной. Осветив поверхность жидкости косо падающим пучком света, можно отбросить на экран 6 изображение поверхности, на котором четко будут видны все неровности, создаваемые ультразвуковым изображением. В ультразвуковом микроскопе новой конструкции, как это показано на рис. 70, можно получать изображение рассматриваемого предмета также и с помощью линзы. И в этом случае на фоне ряби, создаваемой ультразвуком, четко вырисовывается изображение рассматриваемого предмета.
Рис. 69.Схема ультразвукового микроскопа новой конструкции
Рис. 70.Схема ультразвукового микроскопа новой конструкции с линзой
Качество оптических приборов зависит от их разрешающей способности, определяемой наименьшим расстоянием между двумя точками, которое можно различить с помощью данного прибора. Если точки находятся на расстоянии, меньшем, чем разрешающая способность прибора, они будут казаться нам слившимися в одну.
Чем короче длина волны, тем больше возможная разрешающая способность. Ультразвук с частотою в миллиард колебаний имеет длину волны, близкую к длинам волн видимого света. Однако разрешающая способность ультразвукового микроскопа в сильной степени зависит и от свойства кварцевой пластинки, создающей ультразвуковой луч. Что же касается длин волн, то полученные в настоящее время короткие ультразвуковые волны не предел, и можно надеяться достигнуть в ультразвуковом микроскопе большей разрешающей способности, чем в микроскопе оптическом. На рис. 71 изображен ультразвуковой микроскоп.
Рис. 71.Внешний вид ультразвукового микроскопа
Практическое применение ультразвукового микроскопа
Область возможных применений ультразвукового микроскопа очень широка, так как он позволяет рассматривать то, что нельзя увидеть ни простым глазом, ни в оптический микроскоп. На рис. 72 изображена полученная с помощью ультразвукового микроскопа (при десятикратном увеличении) фотография проволочки, погруженной в непрозрачную жидкость.
Читать дальше