Когерентные волны и интерференция
Если две синусоидальных волны с одинаковой частотой, неизменной разностью фаз, распространяются с одной скоростью, накладываясь друг на друга, создают интерференционную картину, их называют когерентными.
Результат сложения когерентных волн зависит от состояния их фаз.
Простейший пример взаимодействия когерентных колебаний. Два периодических колебания одинаковой частоты, распространяясь навстречу друг другу с одинаковой скоростью, при сложении образуют «стоячую волну» той же частоты
Световые волны не могут обладать бесконечной когерентностью. Дело в том, что в спектре самых высоко когерентных источников всегда присутствуют волны с разными частотами благодаря доплеровскому смещению излучения хаотично движущихся атомов. Поэтому существует понятие «длины когерентности» (L k).
Сумма двух когерентных волн, совпадающих в фазе Δφ = 0
Сумма двух когерентных волн в противофазе Δφ = 90
На рисунке изображена картина интерференции двух волн с разными частотами.
Если в начале своего пути волны совпадают по фазе и при сложении образуют волну с удвоенной амплитудой (белый цвет), то по мере распространения, фазы двух волн начинают смещаться относительно друг друга, и на расстоянии (L) оказываются в противофазе (черный цвет). Затем фазы, продолжая смещаться, начинают совпадать во второй зоне, третьей и так далее. Возникают так называемые биения взаимодействующих волн. Максимальная разность хода лучей, при которой волны при сложении образуют ярко выраженную картину интерференции, называют длиной когерентности (L k) светового пучка. Контрастность интерференционной картины при максимальной разности хода двух волн, принята быть равной:
(L k) = I 1/I 0~ 0,7;
где I 1 – интенсивность светлой полосы при L k
I 0 – интенсивность светлой полосы при нулевой разности
Явление интерференции свидетельствует о том, что свет – это волна. При взаимодействии когерентных волн наблюдается усиление или ослабление результирующих колебаний в различных точках пространства. Система перемежающихся на экране темных и светлых линий называется интерференционной картиной.
Условие интерференции: волны должны быть когерентны. В простейшем случае когерентными являются волны одинаковой длины (частоты), между которыми существует постоянная разность фаз.
Все источники света, кроме лазера, имеют очень маленькую когерентность, однако вспомните, как Томас Юнг впервые наблюдал явление интерференции, разделив световую волну на две когерентные с помощью двойной щели.
Рассмотрим условия образования максимумов и минимумов освещенности экрана
Пусть разность хода между двумя точками Δ = S 1-S 2, тогда условие максимума освещенности экрана:
Δ = kλ;
т. е. на этом направлении в точке (p) экрана (Э) укладывается четное число полуволн (k = 1, 2, 3, …), или целое число длин волн (λ) и наблюдается максимум яркости результирующей картины.
Условие минимума освещенности экрана:
Δ = λ (2k+1) /2;
на этом направлении укладывается нечетное число полуволн. В результате на фотопластинке записывают структуру с периодом (d):
2d = λ/sin (Ө/2),
где: λ – длина волны;
(Ө) – угол между направлениями интерферирующих лучей
Картина интерференции двух плоских когерентных волновых фронтов, которую регистрируют на светочувствительной фотопластинке в голографических экспериментах
Дифракция
Дифракционная решетка – система препятствий (параллельных штрихов), сравнимых по размерам с длиной волны. Решетки представляют собой периодические структуры, выгравированные специальной делительной машиной на поверхности стеклянной или металлической пластинки. У хороших решеток параллельные друг другу штрихи имеют длину порядка 10 см, а на каждый миллиметр приходится до 2000 штрихов. При этом общая ширина решетки достигает 10 – 15 см. Изготовление таких решеток требует применения самых высоких технологий. На практике применяются также и более грубые решетки с 50 – 100 штрихами на миллиметр, нанесенными на поверхность прозрачной пленки. В качестве дифракционной решетки может быть использован кусочек компакт-диска.
Читать дальше
Конец ознакомительного отрывка
Купить книгу