В ходе звездной эволюции процессы сжатия и расширения чередуются вновь и вновь. Пока есть топливо, звезда его сжигает. Когда его запасы иссякают, ядро сжимается и разогревается до тех пор, пока не достигнет температуры, достаточной для начала термоядерной реакции с новым топливом. В этой последовательности появляются ядра все более тяжелых элементов:
Гелий → Углерод → Кислород → Неон → Кремний → Железо
На каждом этапе для сохранения равновесия внешняя оболочка звезды расширяется все сильнее. Звезда-гигант становится все больше. Однако ядерная физика учит, что процесс синтеза не может продолжаться без конца, а прекращается на ядрах группы железа. Дальнейшее присоединение частиц к ядру железа уже не может привести к выделению энергии. К этому моменту температура ядра достигает около 10 млрд. градусов Цельсия, и звезда оказывается в катастрофическом положении. Гравитации, которая до сих пор регулировала равновесие горячей звезды, это уже не под силу. В звезде развиваются неустойчивости, вследствие которых внешняя оболочка может быть сброшена. Эта катастрофа наблюдается как вспышка сверхновой звезды.
Продуктами такого взрыва являются атомные ядра (синтезированные в звезде), электроны, нейтрино и излучения.
Ядра атомов образуют потоки космических лучей, которые распространяются в нашей Галактике на огромные расстояния. Для нас, жителей Земли, было бы настоящей катастрофой, если бы взрыв сверхновой произошел на расстоянии, скажем, 100 световых лет. Порожденные этим взрывом космические лучи высоких энергий натворили бы страшных бед в земной атмосфере. Они могли бы, например, разрушить весь защитный слой озона и тем самым открыть все живое на Земле ультрафиолетовому излучению Солнца. К счастью, взрыв сверхновой — довольно редкое явление. Частота таких взрывов по всей Галактике — примерно одно событие в 100–300 лет. Поэтому вероятность взрыва сверхновой в наших окрестностях не дальше 100 световых лет в течение тысячи лет равна всего лишь одной миллионной.
При всей разрушительности взрыва сверхновой имеются данные, что это событие может в свою очередь стимулировать образование звезды из близлежащего газового облака. Химический состав Солнечной системы свидетельствует о том, что своим рождением она могла быть обязана взрыву сверхновой. Сталкиваясь с облаком межзвездного газа, ударные волны от таких взрывов могут способствовать началу сжатия. Не исключено, что Солнце и планеты сконденсировались из сжимающегося газового облака. Таким образом, звездные катастрофы могут играть и созидательную, а не только разрушительную роль.
Установлено (как уже было сказано), что все звезды живут своей долгой и своеобразной жизнью. По крайней мере каждая из них когда-то родилась и когда-то умрет. В. А. Амбарцумян сформулировал дилемму, возникшую в современной звездной космогонии: что считать первичным при образовании светил — рассеянное ли (диффузное) вещество или какие-то плотные (сверхплотные образования). Хотя нет никаких прямых доказательств возникновения звезд из диффузного вещества (так же, как и прямо противоречащих этому факту), то обычно ссылаются на косвенные аргументы. В пользу образования звезд из межзвездного диффузного вещества говорят следующие доводы. В нашей Галактике мы не наблюдаем непосредственно никаких других, сколько-нибудь значительных по массе объектов, кроме звезд и диффузной материи. А так как формирование звезд продолжается — и это общепризнанный факт, — то они могли возникнуть только из диффузного вещества.
Для обоснования противоположной гипотезы необходимо предположить, что существуют какие-нибудь неизвестные нам плотные «протозвезды». Если сравнить распределение звезд и диффузного вещества, то легко можно убедиться, что молодые звезды расположены главным образом в непосредственной близости от плоскости Галактики. То же самое характерно для диффузного вещества. Более того, в тех областях пространства, где расположены группы молодых, недавно возникших звезд, то есть в звездных ассоциациях, мы часто наблюдаем диффузные газовые туманности, которые следует тогда рассматривать как материал для продолжения процесса звездообразования или как остатки этого процесса.
Поскольку Галактика состоит из спиральных ветвей, вдоль которых и располагаются молодые звезды и звездные ассоциации, постольку гораздо легче предположить, что форма ветвей отражает распределение газа, из которого звезды возникли. Наблюдаемые газовые облака, по-видимому, располагаются вдоль тех же спиральных ветвей. Наконец, только диффузное тело большого первоначального объема может иметь большой момент вращения, каким обладают, например, широкие звездные пары, то есть те, составные части которых расположены далеко друг от друга. Вот вкратце аргументы В. А. Амбарцумяна в пользу гипотезы о возникновении звезд из диффузного вещества.
Читать дальше