Тем не менее, несмотря на эти условия, небесные тела в течение времени, исчисляемого миллиардами лет, сохраняют параметры своих орбит практически неизменными, а Вселенная в целом существует вечно. Чтобы сохранить подобное почти стационарное состояние Вселенной, необходимо иметь какой-то источник энергии, который позволял бы скомпенсировать расходы энергии, затрачиваемые на сопротивление космической среды. Существует ли он в природе? Этот вопрос является исключительно сложным, но зато — и особенно интересным. По существу, речь идет о том, существует ли некоторый единый механизм — «Двигатель Вселенной», поддерживающий определенное ее состояние.
В первом приближении классическая небесная механика дает на это следующий ответ: Вселенная поддерживается в определенном динамическом равновесии с помощью сил тяготения небесных тел и сил инерции их масс без учета материальности космической среды. Конечно, математическая модель даже такой Вселенной чрезвычайно сложная, но принципиально ее можно описать и даже промоделировать с помощью современных ЭВМ. Однако реальная структура космического пространства создает некоторый эффект торможения движению небесных тел. Небесная механика позволяет исследовать и этот эффект, однако она не дает ответа на вопрос — почему же Вселенная преодолевает торможение движения небесных тел и откуда она находит энергетические ресурсы для восстановления расходуемой энергии? Чтобы выявить подобные энергетические ресурсы, необходимо более детально рассмотреть особенности гравитационного взаимодействия между небесными телами.
Распределенная масса небесных тел приводит к существенному изменению гравитационных взаимодействий между телами. Поскольку каждая материальная частица небесного тела является источником гравитационного поля, результирующее (или суммарное) поле жестко связано с телом и участвует в его вращении вокруг центра масс как одно целое. Это означает, что гравитационное поле не только охватывает значительное пространство вокруг тела, но и вращается вместе с телом, увлекая за собой все другие внешние взаимодействующие материальные объекты. Но вращение гравитационного поля небесного тела само по себе не может служить источником дополнительной энергии. Нужен какой-то дополнительный эффект в небесной механике. И вот здесь-то и требуется сделать еще один шаг в изучении гравитационного поля, основанный на учете влияния относительного движения тел на силу их взаимного притяжения. В статических условиях, когда тела неподвижны относительно друг друга, сила Q0 их взаимного притяжения пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними (закон всемирного тяготения).
Что же произойдет с силой притяжения, если тела будут сближаться или ударяться относительно друг друга с некоторой скоростью V? Поскольку скорость распространения гравитационного поля относительно излучающего тела имеет конечную величину (обозначим С — скорость поля относительно излучающего тела), следовательно, она зависит также и от скоростей относительного движения тел (полагаем, что закон сложения скоростей справедлив для всех материальных объектов, включая и физические поля).
Благодаря этому сила Q гравитационного притяжения будет зависеть не только от масс тел и расстояний между ними, но и от величины относительной скорости V. Установлено, что при сближении тел, летящих со скоростью V, сила их взаимного притяжения Q будет несколько меньше, чем ее статическое значение Q0(QQ0). Зависимость силы Q от скорости V может иметь сложный нелинейный характер.
Между тем зависимость силы взаимного тяготения тел от относительной скорости между ними в классической механике не была учтена. Однако влияние относительного движения тел на физические процессы взаимодействия между ними проявляется повсеместно в природе. В частности, при больших скоростях относительного движения, близких к скорости света, происходят релятивистские эффекты, вызванные существенным изменением сил взаимодействия. Какое же новое качество вносится в небесную механику при количественном изменении сил всемирного тяготения, вызванном скоростями относительного движения тел?
Прежде чем делать широкое обобщение о влиянии скоростей относительного движения тел в небесной механике, необходимо рассмотреть пример, позволяющий уяснить существо данной проблемы для земных условий. Предположим, что наблюдатель находится внутри космического корабля, летящего вокруг Земли в направлении ее вращения по экваториальной круговой орбите с периодом Т более суток (Т>24 часов). Земное гравитационное поле вращается вместе с Землей и совершает один оборот за сутки, обгоняя космический корабль (рис. 106). Рассматривая движение Земли, наблюдатель обнаружит, что поверхность ее восточного полушария будет удаляться от корабля, а западного — приближаться к нему вследствие вращения Земли вокруг своей оси.
Читать дальше