13. Подход Бома или де Бройля-Бома никогда не получал широкого внимания. Возможно, одна из причин этого, как обратил внимание Джон Белл в своей статье "The Impossible Pilot Wave," в сборнике Speakable and Unspeakable in Quantum Mechanics , что ни де Бройль, ни Бом особенно не испытывали нежных чувств к тому, что сами разработали. Но еще раз, как указал Белл, подход де Бройля-Бома намного превзошел неопределенность и субъективность большинства стандартных подходов. Если нет других причин, даже если подход неправильный, стоит знать, что частицы могут иметь определенные положения и определенные скорости во все времена (но вне нашей способности их измерить, даже в принципе) и все еще полностью соответствовать предсказаниям стандартной квантовой механики – неопределенность и все остальное. Другой аргумент против подхода Бома тот, что нелокальность в этой схеме более "суровая", чем в стандартной квантовой механике. При этом она означает, что подход Бома имел нелокальные взаимодействия (между волновой функцией и частицей) как центральный элемент теории с самого начала, тогда как в квантовой механике нелокальность более глубоко скрыта и появляется только через нелокальные корреляции между далеко разнесенными измерениями. Но, как доказывали сторонники этого подхода, раз уж нечто скрыто, оно от этого не станет меньше присутствовать и, более того, так как стандартный подход находится в неопределенности относительно проблемы квантового измерения, – самое место, где нелокальнось проявляется, – однажды, когда проблема будет полностью решена, нелокальность в итоге может и не быть столь скрытой. Другие доказывали, что имеются препятствия, чтобы сделать релятивистскую версию подхода Бома, хотя прогресс на этом фронте так же был сделан (см., например, John Bell, Beables for Quantum Field Theory в отмеченном выше сборнике). Так что определенно стоит держать этот альтернативный подход в уме, хотя бы только как контраст против опрометчивых заключений о том, что квантовая механика неизбежно в себя включает. Для склонного к математике читателя прекрасное рассмотрение теории Бома и проблем квантового запутывания можно найти в книге Tim Maudlin, Quantum Non-locality and Relativity (Maiden, Mass.: Blackwell, 2002).
14. Для детального, хотя и формального обсуждения стрелы времени в целом и роли декогерентности в частности, см. H. D. Zeh, The Physical Basis of the Direction of Time (Heidelberg: Springer, 2001).
15. Именно чтобы дать вам ощущение, как быстро наступает декогерентность – как быстро влияние окружающей среды подавляет квантовую интерференцию и при этом приводит квантовые вероятности к привычным классическим, – приведем несколько примеров. Числа приблизительны, но смысл, который они передают, ясен. Волновая функция частички пыли, плавающей в вашей жилой комнате и бомбардируемой дрожаниями молекул воздуха, будет декогерентной через примерно миллиардную от миллиардной от миллиардной от миллиардной (10 –36) доли секунды. Если частичка пыли содержится в совершенной вакуумной камере и подвергается только взаимодействиям с солнечным светом, ее волновая функция будет декогерентной чуть медленее, чем за тысячную от миллиардной от миллиардной (10 –21) доли секунды. И если частичка пыли плавает в темнейших глубинах пустого пространства и подвергается только взаимодействиям с реликтовыми микроволновыми фотонами от Большого взрыва, ее волновая функция будет декогерентной примерно за миллионную долю секунды. Эти числа экстремально малы, что показывает, что декогерентизация для чего-то даже столь мельчайшего, как частица пыли, происходит очень быстро. Для более крупных объектов декогерентизация происходит еще быстрее. Потому не удивительно, что даже если наша вселенная квантовая, мир вокруг нас выглядит так, как он выглядит. (См., например, E. Joos, "Elements of Environmental Decoherence," in Decoherence: Theoretical, Experimental, and Conceptual Problems , Ph. Blanchard, D. Giulini, E. Joos, C. Kiefer, I.-O. Stamatescu, eds. [Berlin: Springer, 2000]).
Глава 8
1. Чтобы быть более точным, симметрия между законами в Коннектикуте и законами в Нью-Йорке использует как трансляционную симметрию, так и вращательную симметрию. Когда вы выступаете в Нью-Йорке, вы не только изменили свое положение из Коннектикута, но, более чем вероятно, вы предприняли ваше выступление в некотором ином направлении (запад вместо севера, возможно), чем во время подготовки.
2. Законы движения Ньютона обычно описываются как применимые для "инерциальных наблюдателей", но если более пристально посмотреть, как такие наблюдатели определяются, получается циклическая ситуация: инерциальные наблюдатели это те наблюдатели, для которых действуют законы Ньютона. Хороший способ подумать о том, что на самом деле происходит, тот, что законы Ньютона притягивают наше внимание к большому и особенно удобному классу наблюдателей: к тем, чье описание движения полностью и количественно подходит под ньютоновскую схему. По определению это и есть инерциальные наблюдатели. На практике инерциальные наблюдатели это те, на кого не действуют силы любого вида, – это означает, наблюдатели, которые не испытывают ускорения. ОТО Эйнштейна, в отличие от этого, применима ко всем наблюдателям, не зависимо от состояния их движения.
Читать дальше