3. Для математического, но и в высшей степени педагогического рассмотрения см. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (Burr Ridge, 111.; McGraw-Hill Higher Education, 1965).
4. Вы можете попытаться привлечь дискуссию Главы 3, в которой мы изучили, что при скорости света время останавливается, чтобы доказать, что с точки зрения фотона все моменты времени есть один и тот же момент, так что фотон "знает", как установлен выключатель детектора, когда он проходет через лучевой разветвитель. Однако, эти эксперименты могут быть проведены и с другими видами частиц, такими как электроны, которые двигаются медленнее света, а результаты останутся неизменными. Таким образом, эта точка зрения не освещает существенной физики.
5. Экспериментальные настройки, а также реально подтвержденные экспериментальные результаты, обсуждались исходя из Y. Kim, R. Yu, S. Kulik, Y. Shih, M. Scully, Phys. Rev. Lett , vol. 84, no. 1, pp. 1-5.
6. Квантовая механика также может базироваться на эквивалентном уравнении, представленном в другой форме (известной как матричная механика) Вернером Гейзенбергом в 1925. Для склонного к математике читателя уравнение Шредингера есть: НΨ(x,t) = ihdΨ(x,t)/dt , где Н обозначает гамильтониан, Ψ обозначает волновую функцию, а h есть постоянная Планка.
7. Подготовленный читатель отметит, что я пропустил тут одно тонкое место. А именно, мы должны были взять комплексно сопряженную волновую функцию частицы, чтоб обеспечить, что она решает обращенную во времени версию уравнения Шредингера. Это означает, что описанный в комментарии 2 к Главе 6 оператор Т действует на волновую функцию Ψ(x,t) и отображает ее в Ψ *(x,–t) . Это не имеет существенного влияния на обсуждение в тексте.
8. Бом на самом деле заново открыл и разработал дальше подход, который восходит к принцу Луи де Бройлю, так что этот подход иногда называют подходом де Бройля-Бома.
9. Для склонного к математике читателя заметим, что подход Бома локален в конфигурационном пространстве, но определенно нелокален в реальном пространстве. Изменения волновой функции в одном месте в реальном пространстве немедленно оказывают влияние на частицы, расположенные в других, удаленных местах.
10. Для исключительно ясного обсуждения подхода Жирарди-Римини-Вебера и его применения к пониманию квантового запутывания см. J. S. Bell, "Are There Quantum Jumps?" in Speakable and Unspeakable in Quantum Mechanics (Cambridge, Eng.: Cambridge University Press, 1993).
11. Некоторые физики рассматривают вопросы из этого списка как не относящиеся к делу и являющиеся продуктом ранней путаницы в отношении квантовой механики. Волновая функция, утверждает эта точка зрения, является просто теоретическим средством, чтобы делать (вероятностные) предсказания, и не должна соответствовать никакой, кроме математической, реальности (точка зрения, которую иногда называют подходом "Заткнись и вычисляй", поскольку он поощряет использовать квантовую механику и волновые функции, чтобы делать предсказания, не задумываясь сильно о том, что на самом деле означают и делают волновые функции). Вариант этой темы утверждает, что волновые функции никогда на самом деле не коллапсируют, но что взаимодействия с окружающей средой делают кажущимся такой коллапс. (Мы коротко обсудим версию такого подхода). Я симпатизирую этим идеям и, фактически, строго верю, что рано или поздно мы будем обходиться без услуг понятия коллапса волновой функции. Но я не нахожу первый подход удовлетворительным, так же я не готов отказаться от понимания, что происходит в мире, когда мы "не смотрим", а второй подход – поскольку, на мой взгляд, это правильное направление, – требует дальнейших математических разработок. Основной момент в том, что измерение вызывает нечто, что есть , или похоже на или маскируется под коллапс волновой функции. Или через лучшее понимание влияния окружения, или через некоторые другие подходы, которые еще должны быть предложены, этот явный эффект требует рассмотрения, а не просто выбрасывания из головы.
12. Имеются другие спорные проблемы, связанные с многомировой интерпретацией, которые уходят дальше ее очевидной экстравагантности. Например, имеются технические проблемы определения понятия вероятности в контексте, который содержит бесконечное число копий каждого из наблюдателей, чьи измерения, как предполагается, подвержены этим вероятностям. Если данный наблюдатель на самом деле является одной из многих копий, в каком смысле мы можем сказать, что он или она имеет особую вероятность измерить этот или тот результат? Кто на самом деле есть "он" или "она"? Каждая копия наблюдателя будет измерять – с вероятностью 1 – любой результат, какой бы ни был получен для особой копии вселенной, в которой он или она находится, так что полная вероятностная схема требует (и требовала, и продолжает требовать) осторожной проверки в многомировой схеме. Более того, более техническое замечание, склонный к математике читатель осознает, что в зависимости от того, насколько точно определяются многие миры, может потребоваться выбор преимущественного собственного базиса. Но как должен быть выбран этот собственный базис? Была масса дискуссий и еще больше статей по этим вопросам, но на сегодняшний день нет универсально принятой резолюции. Коротко обсужденный подход, базирующийся на декогеренции, частично проясняет эти проблемы и предлагает особый взгляд на проблему выбора собственного базиса.
Читать дальше