Струны столь малы, что даже когда дополнительные шесть измерений свернуты в пространство Калаби-Яу, струны все еще колеблются в этих направлениях. По двум причинам это экстремально важно. Первое, это обеспечивает, что струны всегда колеблются во всех девяти пространственных измерениях, и потому ограничение на число способов колебаний продолжает выполняться, даже когда дополнительные измерения тесно скручены. Второе, точно так же, как способы колебаний потока воздуха, продуваемого через трубу, подвергаются воздействию искривлений и поворотов музыкального инструмента, способы колебаний струн подвергаются воздействию искривлений и поворотов в геометрии дополнительных шести измерений. Если вы изменили форму трубы, сделав путь прохождения воздуха более узким или сделав раструб длиннее, способы колебаний воздуха, а следовательно, звук инструмента изменится. Аналогично, если форма и размер дополнительных измерений модифицировались, это также существенно повлияет на точные свойства каждого возможного способа колебаний струны. А поскольку способ колебаний струн определяет ее массу и заряд, это значит, что дополнительные измерения играют стержневую роль в определении свойств частиц.
Это ключевое заключение. Точный размер и форма дополнительных измерений оказывают чрезвычайное воздействие на способы (моды) колебаний струн, а значит на свойства частиц . Поскольку базовая структура вселенной – от формирования галактик и звезд до существования жизни, как мы ее знаем, – чувствительно зависит от свойств частиц, код космоса может быть хорошо записан в геометрии пространства Калаби-Яу.
Мы видели один пример пространства Калаби-Яу на Рис. 12.9, но имеются, по меньшей мере, сотни тысяч других возможностей. Тогда вопрос заключается в том, какую форму Калаби-Яу, если это имеет место, образует часть пространственно-временной ткани, связанная с дополнительными измерениями. Это один из наиболее важных вопросов, стоящих перед теорией струн, поскольку только с определенным выбором формы Калаби-Яу детально определяются свойства колебательных мод струны. На сегодняшний день вопрос остается без ответа. Причина в том, что текущее понимание уравнений теории струн не обеспечивает проникновение в задачу, как выбрать одну форму из многих; с точки зрения известных уравнений каждое пространство Калаби-Яу так же пригодно, как и любое другое. Уравнения даже не определяют размера дополнительных измерений. Поскольку мы не видим дополнительных измерений, они должны быть малы, но вопрос о том, насколько точно малы, остается открытым.
Это фатальный порок теории? Возможно. Но я так не думаю. Как мы будем обсуждать более полно в следующей главе, точные уравнения теории струн ускользали от теоретиков в течение многих лет, так что многие труды использовали приблизительные уравнения. Это позволило взглянуть на огромное число свойств теории струн, но в определенных вопросах, – включая точный размер и форму дополнительных измерений, – приблизительные уравнения терпят нудачу. Поскольку мы продолжаем обострять наш математический анализ и усовершенствовать эти приблизительные уравнения, определение формы дополнительных измерений является первой – и, на мой взгляд, достижимой – целью. До сих пор эта цель остается за пределами достигнутого.
Тем не менее, мы все еще можем спросить, будет ли какой-нибудь выбор формы Калаби-Яу давать моды колебаний струны, которые полностью аппроксимируют известные частицы. И здесь ответ вполне радующий.
Хотя мы далеки от полного исследования каждой возможности, были найдены примеры форм Калаби-Яу, которые приводят к способам колебаний струн в грубом согласии с Таблицами 12.1 и 12.2. Например, в середине 1980х Филип Канделас, Гарри Горовиц, Эндрю Строминджер и Эдвард Виттен (ко физиков, которые осознали применимость пространств Калаби-Яу к теории струн) открыли, что каждая дырка, – термин, используемый в точно определенном математическом смысле, – содержащаяся в пространстве Калаби-Яу, приводит к семейству низкоэнергетических колебательных мод струны. Пространство Калаби-Яу с тремя дырками, следовательно, будет обеспечивать объяснение для повторяющейся структуры семейств элементарных частиц в Таблице 12.1. На самом деле, число таких "трехдырочных" пространств Калаби-Яу было найдено. Более того, среди этих приоритетных пространств Калаби-Яу есть такие, которые также дают точно правильное число частиц-переносчиков, а так же точно правильные электрические заряды и свойства ядерных сил большинства частиц в Таблицах 12.1 и 12.2.
Читать дальше