б) Затем при одном или двух использованных значениях напряжения на сетке сделайте так, чтобы ток в анодной цепи менялся на точно такую же величину при изменении анодного напряжения. (По-прежнему записывая показания прибора.) Затем вычислите коэффициент усиления, подобно тому как это сделано в приведенном ниже примере.
Пример. Предположим, что при изменении напряжения на сетке от —3 до —1 в ток в анодной цепи возрастает от 3 до 7 ма. Допустим, что при постоянном напряжении на сетке — 1 в ток в анодной цепи можно уменьшить с 7 до 3 ма путем изменения напряжения в анодной цепи со 120 до 80 в. Тогда одно и то же изменение тока (в данном примере) происходит при изменении анодного напряжения на 40 в, а напряжения на сетке — на 2 в: необходимо 40 в вместо всего лишь 2 в. Следовательно, сетка в 20 раз более эффективно изменяет величину анодного тока, чем анодное напряжение. Отсюда вывод таков: коэффициент усиления равен 40/ 2, т. е. 20
Фиг. 90. Опыт 8 (г).
Необходимость выпрямления в радиотехнике
Хотя мы не будем изучать радиотехнику детально, вы уже должны быть готовы к пониманию принципов действия основных частей радиоприемника. Однако сделаем следующие необходимые пояснения.
Частоты звуков речи и музыки заключены в интервале от нескольких десятков до нескольких тысяч колебаний в секунду. Существуют два возражения против использования радиоволн в таком диапазоне частот: 1) для достаточно мощной радиостанции, работающей на столь низких частотах, необходима грандиозная система антенн; 2) владельцы радиоприемников будут слышать одновременно все соседние станции, т. е. сплошную какофонию звуков.
Если большую мощность трудно излучать на частоте радиоволны 1000 колебаний в 1 сек, то это легко делать на частоте 1 000 000 колебаний в 1 сек. Поэтому радиостанции излучают радиоволны высоких частот (радиочастоты), амплитуда которых, однако, меняется в соответствии с колебаниями звуков речи или музыки (звуковые частоты).
Основная волна («несущая»), когда она не несет какую-либо мелодию, выглядит так, как показано на фиг. 91.
Фиг. 91. Временная развертка радиоволны.
Частота волны 1 000 000 колебаний в 1 сек, амплитуда постоянна.
Картина звуковой волны, которую необходимо передать с помощью радиоволны, выглядит подобно изображенной на фиг. 92.
Фиг. 92. Временная развертка звуковой волна с частотой в несколько сотен колебаний в 1 сек.
Слева — одна музыкальная нота: синусоида, повторяющаяся с частотой, скажем, 400 раз в 1 сек; справа — гласный звук или нота, взятая на музыкальном инструменте. Форма волны сложнее, повторения происходят с частотой, скажем, 400 раз в 1 сек.
Амплитуду основной радиоволны заставляют следовать форме звуковой волны: она «промодулирована», как на фиг. 93.
Фиг. 93. Радиоволна, «модулированная» звуковыми колебаниями.
Частота радиоволны равна миллиону или больше колебаний в 1 сек, следовательно, в одном периоде акустической волны укладываются тысячи радиочастотных колебаний. На приведенных рисунках истинные соотношения не выдержаны.
Радиоволны такого вида излучаются радиовещательной станцией. Когда такая волна достигает антенны радиоприемника, она наводит в ней колеблющееся с частотой волны напряжение. При этом между антенной и землей возникает слабый ток той же самой частоты. Если приемная система устроена так, что ее собственные колебания точно такой же частоты, то имеет место «резонанс» [146], и поступающая радиоволна вызывает колебания большой амплитуды. Владелец радиоприемника настраивает свою систему антенна — земля на частоту волны той радиостанции, которую он хочет слушать. Он делает это вращением ручки конденсатора колебательного контура, который в его приемнике включен в цепь, связывающую антенну с заземлением.
Принятые антенной модулированные радиочастотные колебания подаются на сетку триода и преобразуются в усиленные колебания тока в анодной цепи, причем увеличение мощности этих колебаний происходит за счет анодной батареи. Можно представить себе, как в приемнике друг за другом следуют новые стадии усиления, после окончания которых ток направляется в громкоговоритель. Но это будет полнейшим заблуждением. Массивная катушка или диффузор громкоговорителя не способны следовать быстрым радиочастотным колебаниям. Даже если бы они и могли, то получился бы не звук, а всего лишь высокочастотный шум, меняющийся в такт звуковым колебаниям. Поэтому необходимо перевести радиочастотные колебания в нечто, что передавало бы картину звуковых колебаний. Это производится путем выпрямления радиочастотных колебаний (в радиотехнике это называется «детектированием»). На фиг. 94 (это перерисованная фиг. 93) изображена картина колебаний тока на входе радиоприемника и соответствующая ей картина колебаний напряжения на сетке радиолампы.
Читать дальше