Как теория, так и эксперимент показывают, что при очень медленном движении шарика через вязкую жидкость (а также и при движении через воздух, если капелька достаточно мала) сила сопротивления, возникающая за счет трения о жидкость, дается выражением
F= K∙( скорость ),
где К — постоянная, зависящая от коэффициента трения жидкости и радиуса шарика, а они не меняются в течение всего эксперимента с капелькой.
Когда капля падает в отсутствие поля, на нее действуют лишь две силы: ее вес m = 9,8 ньютон и сила трения K ∙ v . Разогнавшись вначале, капля падает затем равномерно, без ускорения.
в) Напишите уравнение, показывающее, как эти две силы связаны между собой при равномерном падении. [При написании этого уравнения используйте экспериментальное значение v = 2,305 см/мин [109].]
г) Предположим, что электрическое поле, когда оно включено, имеет напряженность X ньютон/кулон и действует на заряд капельки, равный Q кулон. С какой силой поле действует на капельку?
д) Когда поле включено, капелька движется вверх со скоростью и (например, 2,516 см/мин), и на нее действует сила трения K ∙ v , направленная вниз и препятствующая этому движению. Вес капли m = 9,8 ньютон — это тоже сила, направленная вниз. Начав движение, капля движется с постоянной скоростью без ускорения. Напишите уравнение, связывающее три силы, действующие на капельку.
е) Исключите из последнего выражения вес m = 9,8 ньютон, подставив его значение из первого уравнения, и перепишите результат в форме Q =… Это новое уравнение должно показывать, что Q прямо пропорционально ( v + u ), если X постоянно.
ж) Используйте результат, полученный в пункте е) , для анализа данных измерений Милликена, которые приведены выше. Величина v равнялась 2,305 см/мин и не менялась, а разные значения и приведены выше. Если ( v + u ) служит мерой полного заряда Q , то изменения ( v + u ) должны служить мерой изменения заряда, т. е. заряда, получаемого каплей от ионов и т. д.
Изменение заряда Δ Q определяется по изменению ( v + u ), которое равняется изменению v + изменение u . Но u не меняется, так что изменение v равно нулю и Δ Q определяется изменением u .
Рассчитайте изменения скорости подъема капли и используйте их для определения изменения заряда, т. е. для определения заряда, подхваченного каплей. Рассчитайте все значения изменения u . Найдите одно элементарное изменение, которое объяснит все наблюдаемые изменения, и предположите, что оно соответствует одному электронному заряду. Затем скажите, сколько электронов должно было участвовать в каждом наблюдаемом изменении заряда.
[Результаты Милликена не могли быть «абсолютно точны». Последний знак в приводимых им значениях, скорее всего, сомнителен. Так что вы не должны обращать внимания на небольшие различия. Что значит «небольшие» — ваше дело догадаться. Милликен обсуждал этот вопрос, когда разбирал возможные ошибки своего эксперимента, и даже поссорился (вспомним яйца в кульке) с одним из своих соперников, который долго отстаивал существование «субэлектрона». Сомнения в последнем знаке, который приводит Милликен, означают, что случайная ошибка может приводить к изменениям Δ u в 1 или 2 %.]
з) Используя то изменение и, которое, согласно вашему решению, отвечает одному электронному заряду, вернитесь к значению ( v + u ), которое определяет ПОЛНЫЙ заряд, и рассчитайте, сколько электронных зарядов несла капля, начиная свое движение, когда скорость ее подъема u 1составляла 2,516 см/мин.
Расчеты в пунктах ж) и з) показывают, каким способом Милликен доказал, что все электроны имеют один и тот же заряд.
Фиг. 7. Опыт Милликена.
Универсальный атом электричества
Измерения с одной капелькой могли гарантировать существование основного атома электрического заряда. Но для того чтобы доказать, что основной «атом заряда» есть универсальная постоянная, Милликен должен был выполнить множество опытов с капельками различных размеров, с разными жидкостями и с различными способами ионизации. Если бы в каком-нибудь эксперименте обнаружилась нецелая доля введенного им гипотетического заряда вместо целого их числа, то он вынужден был бы выбрать меньшее значение «атома электричества» — и тогда необходимость переходить ко все меньшим и меньшим атомам разрушила бы как его надежды на успех, так и наши нынешние теории строения атомов.
Читать дальше