Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила

Здесь есть возможность читать онлайн «Эрик Роджерс - Физика для любознательных. Том 1. Материя. Движение. Сила» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1969, Издательство: Мир, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика для любознательных. Том 1. Материя. Движение. Сила: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика для любознательных. Том 1. Материя. Движение. Сила»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.

Физика для любознательных. Том 1. Материя. Движение. Сила — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика для любознательных. Том 1. Материя. Движение. Сила», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Такой же результат дает опыт с игрушечным электрическим поездом, движущимся по кольцевому рельсовому пути. Путь уложен на велосипедном колесе с вертикальной осью и свободно вращается. Как только поезд трогается, рельсы начинают двигаться в обратном направлении.

Мы придерживаемся той точки зрения, что закон сохранения количества движения справедлив для молекул, атомов и даже для составных частей атомов. Мы считаем, что этот закон применим ко всем соударениям молекул, в том числе к неупругим столкновениям, когда один атом налетает на другой и выбивает из него какие-нибудь частицы. Этот принцип оказывается настолько плодотворным, что если бы мы натолкнулись на случай, когда количество движения «исчезает», обращается в «ничто» (скажем, при атомном превращении), то могли поддаться искушению придумать какую-то крошечную невидимую частицу, которая уносит недостающее количество движения. Нам пришлось бы выдумать особого рода «демона», встав, вообще говоря, на опасный путь. Антинаучный подход? Да, если вы не найдете иных обоснований для введения демона или применений его!

Мы действительно сталкиваемся с необъяснимым исчезновением количества движения, когда радиоактивный атом выбрасывает электрон — бета-частицу.

В ядерной физике нам пришлось прибегнуть к помощи такого демона — крошечного «нейтрино», частицы, не обладающей ни массой, ни электрическим зарядом, по которым можно было бы обнаружить ее присутствие. В течение многих лет нейтрино оставалось невидимым, и многие действительно считали, что его невозможно обнаружить. Но тогда честно ли было утверждать, что нейтрино существует? Возможно, мы поступали неразумно, рассматривая нейтрино как реально существующую частицу, но как способ устранения незначительных и в то же время существенных нарушений закона сохранения количества движения гипотеза нейтрино была, по-видимому, ничуть не хуже любого другого способа выражения опытной истины. Гипотеза содействовала ясности мышления, и мы поручили нейтрино сразу несколько дел: помимо количества движения, нейтрино уносило некоторую порцию энергии и момент количества движения, восстанавливая баланс и этих величин. Это сделало его более приемлемым: право же, однорукому демону не место в науке! Недавно замечательные поиски физиков-экспериментаторов увенчались успехом: нейтрино было обнаружено. Наш демон занял подобающее место в принятой нами системе классификации научных фактов.

Проработайте предлагаемые задачи, заполняя пропуски, оставленные для ответов.

Задачи на сохранение количества движения

Вычислите полное количество движения в заданном направлении до столкновения, затем вычислите полное количество движения после столкновения. Обозначьте неизвестную вам скорость или силу через X , затем приравняйте суммарное количество движения до столкновения и после столкновения (т. е. предположите, что количество движения сохраняется) и решите уравнение относительно X .

Задача 5

Автомобиль массой 1500 кг, движущийся со скоростью 6 м/сек, догоняет грузовик массой 2000 кг, движущийся со скоростью 3 м/сек в том же направлении, и врезается в грузовик. Найдите скорость, с которой будут двигаться обе машины вместе.

Количество движения всегда сохраняется (т. е. суммарное количество движения не меняется при любом столкновении).

Начальное количество движения легкового автомобиля =

= (___)∙(___)∙____ (единицы)

Начальное количество движения грузовика =

= (___)∙(___)∙____ (единицы)

После столкновения суммарная масса равна ___ кг.

Обозначим скорость обеих машин, движущихся вместе после столкновения, через X м/сек.

Следовательно, количество движения обеих соединившихся машин, выраженное через X , равно (___)∙____ (единицы)

Поскольку суммарное количество движения в направлении вперед одинаково до и после столкновения, то ___ + ___ = ___ м/сек.

Следовательно, решая уравнение относительно X , получаем:

Конечная скорость Х = ___ м/сек.

Задача 6

Автомобиль массой 1500 кг, движущийся со скоростью 6 м/сек, сталкивается «в лоб» с автомобилем массой 2000 кг, движущимся со скоростью 3 м/сек. Найдите скорость обоих автомобилей после столкновения.

Суммарное количество движения до столкновения = количеству движения автомобиля 1 + количество движения автомобиля 2 = ___ + ___ ∙ ___ (единицы)

(Количество движения — вектор, обращайте внимание на знаки плюс и минус.)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика для любознательных. Том 1. Материя. Движение. Сила»

Представляем Вашему вниманию похожие книги на «Физика для любознательных. Том 1. Материя. Движение. Сила» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Физика для любознательных. Том 1. Материя. Движение. Сила»

Обсуждение, отзывы о книге «Физика для любознательных. Том 1. Материя. Движение. Сила» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x