Светящиеся газы могут проводить электрический ток, подтверждая присутствие в них заряженных ионов, переносящих этот ток. Ионы создаются в пламени главным образом благодаря выделению химической энергии, и местами возникают атомы более быстрые, нежели большинство атомов газа в пламени. При высоких температурах, скажем 6000 °C, как на поверхности Солнца, обычные соударения могут возбуждать достаточное количество атомов для создания видимого свечения. (Этот свет Солнца и других звезд тонет в гигантском потоке излучения, идущего из пышущих жаром недр.)
Однако сильное нагревание — слишком сложный способ получения ионов. Проще получить их с помощью электрического разряда. Приложим к газу сильное электрическое поле. При своем возникновении сам ион и оторванный от него электрон ускоряются полем и могут приобрести достаточно энергии, чтобы при соударении с молекулой газа создать еще один ион . Таким образом, каждый ион будет создавать вторичные ионы, которые в свою очередь также будут увеличивать число ионов. Возникает размножающийся лавинный, или цепной, процесс, который мы называем электрическим разрядом. Его можно проиллюстрировать на модели, изображенной на фиг. 116.
Фиг. 116. Модель лавины («разряда»).
В небольшие канавки на наклонной планке уложены шарики. Они представляют молекулы, а расстояние между канавками — средний свободный пробег. Шарик, изображающий ион, выпускается сверху планки и катится вниз, пока не встретит ряд «молекул». Если наклон невелик (слабое электрическое поле), «ион» остановится. Если наклон побольше, то шарик вытолкнет другой, а сам остановится. Возникает небольшой ток. Но если наклон достаточно велик (сильное электрическое поле), «ион» вытолкнет несколько шариков, каждый из которых вытолкнет еще несколько, и т. д. Возникает лавина («разряд»).
Хороший способ создать тонкую цепочку ионов — это пропускать через газ (жидкость или твердое тело) заряженную частицу с очень высокой энергией (ядро или электрон). Своим электрическим полем этот снаряд будет выбивать на пути электроны из многих атомов, оставляя тонкий след в виде ионизованного газа. Именно так поступают α -частицы и β -лучи радиоактивных атомов.
Фиг. 117. Очень быстрые заряженные частицы оставляют на своем пути след из ионов.
В одной из последующих глав мы расскажем, как можно сфотографировать этот след или воспользоваться им в счетчике Гейгера.
В слабом электрическом поле ионы движутся подобно падающим в воздухе частичкам пыли. Поле силы тяжести ускоряет частички пыли, но молекулы воздуха при каждом соударении отбирают часть приобретенной кинетической энергии. В среднем частичка теряет все, что приобретает за период между двумя соударениями, и кажется, будто она падает с постоянной скоростью, а ее вес компенсируется трением о воздух. С микроскопической точки зрения ее движение представляет собой целый ряд падений с ускорением, замедляемых соударениями. Если такая частичка обладает электрическим зарядом, ее можно «тянуть» электрическим полем. Для маленькой частички нетрудно сделать так, чтобы притяжение электрического поля намного превосходило притяжение поля силы тяжести (из-за малой массы). При этом частичка будет двигаться с гораздо большей постоянной скоростью. Но движение снова будет представлять собой серию прыжков с ускорением, замедляемых трением о воздух. (Именно так обстоит дело о крайне маленькими заряженными капельками масла при измерении заряда электрона в опыте Милликена.)
С электрически заряженными ионами во многом происходит то же самое. Ионы ускоряются электрическим полем до тех пор, пока не столкнутся с молекулами газа и не поделятся с ними дополнительной кинетической энергией, приобретенной от поля. Затем они вновь ускоряются до следующего соударения и т. д. (фиг. 118).
Фиг. 118. Путь иона в слабом электрическом поле.
В слабых полях соударения ионов упругие; приобретенной между двумя соударениями кинетической энергии недостаточно для создания других ионов. Они просто продолжают свой зигзагообразный путь, немного нагревая газ. Для создания дополнительных ионов они должны успеть набрать между двумя соударениями довольно много энергии, а для этого необходимо увеличить либо электрическое поле, либо длину свободного пробега.
Читать дальше