Как это ни парадоксально, но такие же рассуждения, — основанные на мысленных экспериментах, говорят, что когда возникает другая потребность получить теплоту из свободной энергии, т. е. когда мы хотим обогревать квартиру электричеством, мы можем достичь высокой эффективности (к. п. д.).
Используя свободную энергию, мы о помощью небольшой машины можем «перекачивать» теплоту с холодной улицы в теплую комнату. В сущности, такой тепловой помпой может служить вывернутый наизнанку холодильник, морозильное отделение которого помещено вне комнаты. Сейчас этим начинают пользоваться и это обещает дать большую экономию топлива.
Беспорядок, информация, энтропия
Используя солнечный свет, уголь пли гидроресурсы для получения полезной работы типа питания электроламп, привода токарного станка или перекачивания воды на вершину холма и т. д., мы вновь и вновь приходим к теплоте как к почти неизбежному побочному (вследствие трения) и наиболее вероятному конечному продукту. Когда свет лампы поглощается стенами, станок режет металл или вода стекает назад в океан, полученная первоначально из топлива энергия в конце концов целиком превращается в теплоту. А если мы и вначале имели дело с теплотой, то на конечном этапе будет более низкая температура . Она практически не пригодна для дальнейшего использования.
Можно, конечно, придумать и другой конец — позволить свету излучаться в межзвездное пространство, станку закручивать пружину, а воду оставить на вершине холма, но, как правило, конечный продукт все-таки теплота. (Вся энергия от сгорания бензина во всех автомобилях мира за прошлый год перешла в конечном счете в нагревание воздуха и земли.) Такой переход в теплоту с низкой температурой означает увеличение беспорядка в движении молекул. Даже когда теплота сохраняется, например при смешивании горячего и холодного воздуха, беспорядок все равно возрастает: ( группа быстрых молекул в одной области ) + ( группа медленных в другой ) превращается в ( смесь молекул с промежуточным хаотическим движением ). Рассмотрение как простого смешивания горячего и холодного газа, так и общетеоретическое изучение тепловых машин (термодинамики) приводит нас к выводу, что естественной тенденцией является увеличение беспорядка с течением времени . Это придает времени важное свойство — направленность в случае статистических процессов . В простой механике, выраженной в законах Ньютона, время может течь в обоих направлениях. Кинофильм о соударении двух молекул будет выглядеть одинаково правдоподобно, как бы мы ни запустили пленку — с начала или с конца. Но фильм, в котором молекулы горячего газа смешиваются с холодными, выглядит дико, если его запустить с конца. Таким образом, столкновения мириад молекул указывают на направление течения времени в нашем мире. Изобретена физическая мера «беспорядка», названная «энтропией». Говорят, «энтропия Вселенной стремится возрастать». Отсюда возникла мысль о «тепловой смерти» Вселенной [160], когда все будет находиться при одной и той же низкой температуре и максимальном беспорядке вещества и излучения.
Энтропию можно определить как отношение количества тепла к абсолютной температуре , или как вероятность определенной конфигурации в мире молекул. Дальнейшие детали этого определения и его использования увели бы нас слишком далеко за рамки нашего курса, но понаблюдайте за этим понятием в науке последующего полустолетия. «Будущее принадлежит тем, — сказал Фредерик Кеффер, — кто сможет управлять энтропией… Промышленные революции прошлого затрагивали только потребление энергии, но заводы-автоматы будущего — это революция энтропии».
Молекулы газа в процессе соударений в принципе могли бы рассортироваться на быстрые (горячие) в одной части сосуда и медленные (холодные) — в другой. Это означало бы уменьшение беспорядка в противоположность тому, что предсказывает закон возрастания энтропии. Но такое случайное событие почти невероятно — не невозможно, а просто крайне маловероятно.
Наиболее вероятно беспорядочное расположение и скорости молекул, так что упорядоченное расположение после нескольких соударений с большой вероятностью вновь становится хаотическим. Возникновение порядка очень маловероятно даже на протяжении очень долгого времени. Возникновение порядка крайне маловероятно…, беспорядка — очень вероятно, вот почему энтропию можно определить тремя эквивалентными способами: 1) как меру беспорядка; 2) через теплоту и температуру; 3) через вероятности конфигураций молекул (насколько они статистически вероятны).
Читать дальше