Значение гравитационного радиуса было рассчитано по уравнениям теории тяготения Эйнштейна спустя месяц после опубликования теории в 1915 году немецким астрономом и математиком К. Шварцшильдом. С тех пор этот радиус носит его имя. Шварцшильд получил решения уравнений Ньютона для сферического невращающегося тела и основные свойства черной дыры, хотя в то время ни он, ни А. Эйнштейн, которому он передал работу, еще не подозревали о таком приложении результатов.
Пока силы гравитации сжимают звезду и ее радиус больше радиуса Шварцшильда, силам гравитации противодействуют силы внутреннего давления звезды. Эти силы неспособны противостоять сжимающей звезду силе гравитации в том случае, если ее радиус уменьшится до гравитационного радиуса. Произойдет сжатие вещества звезды, которое физики назвали релятивистским коллапсом. Собственно, и черные дыры длительное время назывались коллапсами и только в конце шестидесятых годов с легкой руки американского физика Д. Уилера их стали называть так.
Напрашивается вывод, что если каким-либо образом сжать звезду или планету до размеров ее гравитационного радиуса, то дальше усилия можно не прилагать — она скол-лапсирует сама и превратится в черную дыру. Для этого требуется немного — сжать, например, Солнце до радиуса в 3 километра.
Строгий расчет релятивистского гравитационного коллапса на основании решения уравнений общей теории относительности был выполнен в 1939 году американскими учеными Р. Оппенгеймером и Г. Волковым. Это было строгое, теоретически обоснованное предсказание существования черной дыры. Ясно, что ни Шварцшильд, ни тем более Лаплас не предсказали существование черных дыр со всеми их свойствами.
Границей черной дыры является сфера с радиусом Шварцшильда. Чем ближе к этой границе приближается излучающее тело, тем большее влияние на него оказывают силы гравитации. И не только на него, но и на излучение. Фотоны, составляющие это излучение, уменьшают свою энергию под действием силы гравитации черной дыры. Часть их энергии уходит на противоборство с этой силой. Уменьшение энергии фотона означает уменьшение его частоты.
Другими словами, частота излучения смещается в сторону красного края спектра видимого излучения. Говорят, что излучение «краснеет». Если бы фотонам кто-то добавлял энергию, то излучение бы «голубело». Покраснение излучения, как мы уже знаем, происходит и в результате действия эффекта Доплера. Только рассматриваемое здесь красное смещение, в отличие от доплеровского, называют гравитационным. Оно обусловлено замедлением времени вблизи черной дыры под действием сил гравитации. Очень важно уловить смысл происходящего: приближающаяся к черной дыре звезда излучает такие же (белые) фотоны, что и на большом удалении от черной дыры, но удаленный наблюдатель увидит их покрасневшими, так как при движении к нему они замедляются, то есть уменьшают свою энергию. Когда звезда приблизится к границе черной дыры, далекий наблюдатель вообще перестанет ее видеть. Для него время здесь практически останавливается. Звезда для далекого наблюдателя потухает за стот ысячную долю секунды. Мы упоминаем далекого наблюдателя не случайно. Часы наблюдателя, который находится на движу щейся звезде, никакого замедления времени не отметят. Его нет. Оно есть только у удаленного наблюдателя, который получает всю информацию о ходе времени с помощьюсвета, а свет его подводит, поскольку скорость фотонов замедляется, и они приходят позже обычного (когда на них не действует гравитация черной дыры).
В классической теории тяготения Ньютона одно тело, двигаясь вблизи другого, описывает разные траектории, имеющие в разных случаях форму гиперболы, параболы или эллипса. Ясно, что никаких особенностей в этом плане вблизи черной дыры из классической механики не следует. Но они следуют из теории относительности. Так, замкнутая в классическом случае эллиптическая траектория одного тела около другого становится незамкнутой, если этим друг им телом является черная дыра. Пролетающее тело навивает траектории вокруг черной дыры, то приближаясь, то удаляясь от нее, но на свою старую траекторию не возвращается. Кстати, все траектории при этом располагаются в одной плоскости. Если траектория тела не подходит очень близко к черной дыре, то ее можно представить в виде поворачивающегося эллипса. Он имеется и у планет нашей Солнечной системы. Но составляет он за сто лет менее одной угловой минуты. Тем не менее он был измерен и было показано, что он точно соответствует теории относительности. Черная дыра изменяет не только траекторию движущейся вблизи нее частицы, но и ее скорость. Вблизи черной дыры частица старается двигаться быстрее. Если она попадает на удаление гравитационного радиуса, то она должна двигаться со скоростью света. Ясно, что ближе частица двигаться по кругу не может, так как для этого ей надо превысить скорость света.
Читать дальше