Исследования зависимости силы тока от напряжения приводят к открытию важного закона. Подавляющее большинство проводников подчиняется закону:
U= I∙ R.
Величине R можно дать название сопротивления, в полном соответствии с начальными качественными наблюдениями. Читателю знакома запись: это закон Ома. Подставляя значение силы тока из выражений закона Ома в предыдущую формулу, мы находим:
Q= ( U 2/ R)∙ τ
Надеюсь, что вас не спутает возможность записать выражение энергии, выделяемой проводником в форме тепла, и иначе:
Q= I 2∙ R∙ τ.
Из первой формулы следует, что количество тепла обратно пропорционально сопротивлению. Говоря эту фразу, надо добавить: при неизменном напряжении. Именно этот случай мы и имели в виду, когда впервые воспользовались термином «сопротивление». А вот вторая формула, утверждающая, что тепло прямо пропорционально сопротивлению, требует, чтобы вы добавили: при постоянной силе тока.
В написанных выражениях читатель узнает закон, который носит имена Джоуля и Ленца.
Выяснив, что напряжение и сила тока пропорциональны, и получив, таким образом, возможность определять сопротивление проводника, исследователь естественно задается вопросом, как связана эта важная величина с формой и размером проводника и с веществом, из которого он сделан.
Опыты приводят к следующему открытию. Оказывается, что
R= ρ∙ l/ S ,
где l — длина проводника, a S — его поперечное сечение. Это простейшее выражение справедливо тогда, когда мы имеем дело с линейным проводником неизменного сечения по всей своей длине. При желании, прибегнув к более сложным математическим операциям, можно записать формулу сопротивления для проводника любой формы. Ну, а что это за коэффициент ρ? Он характеризует материал, из которого изготовлен проводник. Значение этой величины, которая получила название удельного сопротивления, колеблется в очень больших пределах. По величинам ρ вещества могут отличаться в миллиарды раз.
Проделаем еще несколько формальных преобразований, которые пригодятся в дальнейшем. Закон Ома можно записать в такой форме:
I= U∙ S/ρ∙ l
Приходится часто встречаться с отношением силы тока к площади сечения проводника. Его называют плотностью тока и обозначают обычно буквой j . Теперь тот же закон запишется так:
j = (1/ρ)∙( U/ l)
Исследователю кажется, что с законом Ома ему все ясно. Располагая неограниченным количеством проводников, сопротивление которых известно, можно отказаться от громоздких определений напряжения с помощью калориметра: напряжение ведь равно произведению силы тока — на сопротивление.
Однако ученый быстро находит, что это утверждение нуждается в уточнении. Используя один и тот же источник тока, он замыкает его полюса различными сопротивлениями. Сила тока, естественно, при каждом опыте будет разной. Но оказывается, что и произведение силы тока на сопротивление I ∙ R не остается одним и тем же. Занявшись изучением этого, пока что непонятного, явления, исследователь обнаруживает, что по мере увеличения сопротивления произведение I ∙ R стремится к некоторой постоянной величине.
Обозначив этот предел через
мы находим формулу, не совпадающую с той, которая была установлена прямыми измерениями силы, тока и напряжения. Новая формула имеет вид:
Что
странное противоречие?
Приходится подумать. Ну, конечно, противоречие кажущееся. Ведь непосредственное измерение напряжения калориметрическим способом относилось только к проводу, замыкающему аккумулятор. А ведь ясно, что тепло выделяется и в самом аккумуляторе (для того, чтобы в этом убедиться, достаточно дотронуться до аккумулятора рукой). Аккумулятор обладает своим сопротивлением. Смысл величины r , стоящей в новой формуле, очевиден: это внутреннее сопротивление источника тока. Что же касается величины то для нее нужно особое название. Нельзя сказать, что выбор был особенно удачным: величину
называют электродвижущей силой (ЭДС), хотя она не имеет ни смысла, ни размерности силы.
Читать дальше