Александр Китайгородский - Физика для всех. Книга 3. Электроны

Здесь есть возможность читать онлайн «Александр Китайгородский - Физика для всех. Книга 3. Электроны» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1979, Издательство: Наука, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика для всех. Книга 3. Электроны: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика для всех. Книга 3. Электроны»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех».
В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул.
В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества.
Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.

Физика для всех. Книга 3. Электроны — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика для всех. Книга 3. Электроны», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

qEmg= av'.

Новое значение скорости v ' измеряется тем же микроскопом. Итак, все величины, входящие в уравнение, известны, кроме величины заряда капли. Вычислим значение этого заряда и запишем его в тетрадь, которую обязательно ведет любой аккуратный экспериментатор.

Вот теперь мы подошли к главной выдумке. Ток в электролите, рассуждал Милликен, переносится ионами разных знаков. Но ведь ионы можно образовать и в газе. Воздух ионизуется самыми разными приемами. Можно, например, всю установку поместить около рентгеновской трубки. Рентгеновские лучи ионизуют воздух. Это было превосходно известно в те времена. Но если капля заряжена, то она будет притягивать к себе ионы противоположного знака. Как только ион прилипнет к капле, заряд ее изменится. А как только заряд станет другим, то и капля изменит свою скорость, которую мы сразу же найдем новым измерением.

Наблюдения показали, что идея верна. После включения рентгеновской трубки разные капли то и дело скачком начинали менять свою скорость. Не спуская глаз с одной капли, наблюдатель мерил разности скоростей до и после включения рентгеновской трубки. По формуле, которую мы привели, сразу же вычислялись значения q .

Вы еще не поняли, для чего это делается? Но подумайте получше. Если существует элементарный электрический заряд, то измеренные величины должны быть равны ему, если к капле присоединился один одновалентный ион, или кратны величине элементарного заряда, если к капле прицепилось несколько ионов.

Проделав свои опыты для капель масла, воды, ртути и глицерина, меняя знаки заряда капель, Милликен заполнил свою тетрадь сотнями чисел значений q , и все они оказались кратными одной и той же величине, той самой, которая была найдена исследованиями электролиза.

После того как Милликен опубликовал свои результаты, даже у скептиков не осталось сомнения в том, что электрический заряд встречается в природе дискретными порциями. А ведь, строго говоря, и опыты Милликена не доказывают непосредственно существование электрона как частицы.

Но гипотезы опережают факты. В зернистой природе электричества кое-кто был уверен уже в начале девятнадцатого века. Заряд иона впервые рассчитал Стони в 1891 г. и он же предложил термин «электрон», но не для частицы, а для заряда одновалентного отрицательного иона. Опыты Томсона заставили подавляющее большинство физиков поверить в существование электрона как частицы. Друде первый недвусмысленно определил электрон как частицу, несущую элементарный заряд отрицательного электричества.

Так что электрон получил признание до того, как его «увидели».

Прямым же доказательством существования электрона являются проделанные позже тонкие опыты. Слабый пучок частиц заставляют падать на экран и их можно сосчитать поодиночке. Каждый электрон дает вспышку на светящемся экране. Впрочем, уже давно для этой цели употребляются не светящиеся экраны, а специальные счетчики, называемые по имени их изобретателя счетчиками Гейгера. В двух словах идея этого счетчика заключается в том, что один электрон, как спусковой крючок револьвера, дает начало сильному импульсу тока, который легко зарегистрировать. Таким образом физик имеет возможность установить число электронов, приходящих в какую-либо ловушку за одну секунду. Если в качестве такой ловушки взять металлическую колбу, внутрь которой будут попадать электроны, то колба постепенно зарядится количеством электричества, достаточным для того, чтобы его можно было точно измерить. Для нахождения заряда электрона остается поделить количество электричества на число пойманных электронов.

Вот только после этого можно сказать: существование электрона перестало быть гипотезой. Это факт. Со скоростью гоночного автомобиля мы пролетели мимо открытий, заложивших фундамент современной физики. Но такова уж их судьба! Новые дела теснят старые, и даже узловые события, происшедшие при строительстве храма науки, переходят в ведение историков. Теперь, пожалуй, можно ответить на вопрос, что такое электричество. Электрический флюид — это поток электрических частиц. Тело электрически заряжено, если число частиц одного знака превосходит число частиц другого знака.

— Ну и объяснение, — негодует читатель. — А что такое электрическая частица?

— Разве не ясно? Частицы называются электрическими, если они взаимодействуют по закону Кулона.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика для всех. Книга 3. Электроны»

Представляем Вашему вниманию похожие книги на «Физика для всех. Книга 3. Электроны» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Александр Китайгородский - Физика – моя профессия
Александр Китайгородский
Александр Дурасов - Чужой для всех. Книга 3.
Александр Дурасов
Александр Китайгородский - Физика для всех. Книга 4. Фотоны и ядра
Александр Китайгородский
Александр Китайгородский - Физика для всех. Движение. Теплота
Александр Китайгородский
Отзывы о книге «Физика для всех. Книга 3. Электроны»

Обсуждение, отзывы о книге «Физика для всех. Книга 3. Электроны» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x