Александр Китайгородский - Физика для всех. Книга 4. Фотоны и ядра

Здесь есть возможность читать онлайн «Александр Китайгородский - Физика для всех. Книга 4. Фотоны и ядра» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1982, Издательство: Наука, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Физика для всех. Книга 4. Фотоны и ядра: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Физика для всех. Книга 4. Фотоны и ядра»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика).
Для широкого круга читателей, проявляющих интерес к данной науке.

Физика для всех. Книга 4. Фотоны и ядра — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Физика для всех. Книга 4. Фотоны и ядра», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Лазерная установка, когда речь идет о создании больших мощностей, — сложное инженерное сооружение. В колонке создается первоначальный импульс, затем он может быть подан на усилители, которые работают на том же принципе, что и первоначальная колонка, но накачиваются независимо от первичной колонки. Мы не будем останавливаться на этих деталях. Нас интересуют физические принципы накачки и создания лазерного излучения. А они могут существенно различаться, как это показывают рис. 1.6–1.8 со схемами действия лазеров, с помощью которых сегодня получают лучи максимальной мощности.

На рис. 1.6 показана схема так называемого неодимового лазера. Название может ввести в заблуждение. Телом лазера является не металл неодим, а обычное стекло с примесью неодима. Ионы атомов неодима беспорядочно распределены среди атомов кремния и кислорода. Накачка производится лампами-молниями. Лампы дают излучение в пределах длин волн от 0,5 до 0,9 мкм. Возникает широкая полоса возбужденных состояний.

Совершенно условно она изображена пятью черточками Атомы совершают - фото 8

Совершенно условно она изображена пятью черточками. Атомы совершают безызлучательные переходы на верхний лазерный уровень (на этой и на других двух схемах он помечен цифрой 2 ). Каждый переход дает разную энергию, которая» превращается в колебательную энергию всей «решетки» атомов.

Лазерное излучение, т. е. переход на пустой нижний уровень, помеченный цифрой 1 , имеет длину волны 1,06 мкм.

Показанный пунктиром переход с уровня 1 на основной уровень «не работает». Энергия выделяется в виде некогерентного излучения.

Неодимовый лазер позволяет получить фантастическую мощность, равную 10 12Вт. Энергия выдается импульсами, которые длятся 0,1 нс.

Молодым конкурентом, стал лазер, использующий переходы в возбужденных атомах иода (рис. 1.7).

Рабочим веществом является газ C 3F 7I И здесь для накачки употребляются - фото 9

Рабочим веществом является газ C 3F 7I. И здесь для накачки употребляются лампы-молнии, но физические процессы иные. Для накачки используется ультрафиолетовый свет с длиной волны 0,25 мкм. Под действием этого излучения происходит диссоциация молекул. Замечательным является то обстоятельство, что атомы иода, отрываясь от молекулы, оказываются в возбужденном состоянии! Как видите, это совсем другой способ достижения инверсии заселенности. Рабочий переход 2 —> 1 приводит к лазерному излучению с длиной волны 1,3 мкм, после чего происходит воссоединение атома иода с молекулярным остатком.

Вероятно, читатель слыхал, что широко используются гелий-неоновые лазеры. С их помощью получают достаточно сильный инфракрасный луч с длиной волны 1,13 мкм. Эти лазеры не принадлежат к числу рекордсменов по мощности. Поэтому мы приводим схему уровней для другого лазера, работающего на смеси азота и углекислого газа (рис. 1.8).

Но прежде чем перейти к ее описанию надо ответить на естественный вопрос - фото 10

Но прежде чем перейти к ее описанию, надо ответить на естественный вопрос: зачем надо пользоваться смесью газов? Ответ таков: одни атомы и молекулы проще возбудить, а другие легче высвечиваются. Так что в лазере, работающем на смеси, в основном накачиваются энергией частицы одного сорта, столкновениями они передают энергию другим атомам или молекулам, а уже эти последние создают лазерный луч.

B ходу системы, состоящие более чем из двух газов. В частности, и в лазере, где основная роль принадлежит азоту и углекислому газу, кроме этих двух веществ целесообразно использовать различные добавки, в том числе гелий.

Накачка лазера, в котором «работают» молекулы СО 2, производится способом, отличным от двух описанных. Смесь газов помещается в газоразрядную трубку, напряжение подается достаточно высокое для того, чтобы система перешла в состояние плазмы. Быстро движущиеся электроны возбуждают колебания молекул азота. Схема показывает скачок этой молекулы на верхний этаж. Не безразлично, какое напряжение приложено к электродам. Оптимальной энергией для возбуждения молекул азота является энергия около 2 эВ.

Молекула азота играет роль лишь посредницы. Сама она не дает излучения, а полученную от электронов энергию передает молекуле СО 2и переводит ее на верхний лазерный уровень.

Верхними лазерными уровнями 2 являются «квартиры третьего этажа» молекул СО 2. Время жизни молекулы газа на верхнем лазерном уровне — около 0,001 с. Это совсем не мало, и молекула имеет достаточно большой шанс дождаться встречи с фотоном подходящей энергии, который вынудит ее поселиться этажом ниже.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Физика для всех. Книга 4. Фотоны и ядра»

Представляем Вашему вниманию похожие книги на «Физика для всех. Книга 4. Фотоны и ядра» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Александр Китайгородский - Физика – моя профессия
Александр Китайгородский
Александр Дурасов - Чужой для всех. Книга 3.
Александр Дурасов
Александр Китайгородский - Физика для всех. Книга 3. Электроны
Александр Китайгородский
Александр Китайгородский - Физика для всех. Движение. Теплота
Александр Китайгородский
Отзывы о книге «Физика для всех. Книга 4. Фотоны и ядра»

Обсуждение, отзывы о книге «Физика для всех. Книга 4. Фотоны и ядра» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x