Итак, мы можем теперь с полным основанием сказать, что образовавшиеся из диффузной межзвездной среды протозвезды как бы «громко кричат», используя для этого новейшую технику квантовой радиофизики... Что касается «первых шагов» новорожденных звезд, то об этом будет разговор в следующем параграфе.
Глава 5 Эволюция протозвезд и протозвездных оболочек
В § 3 мы довольно подробно рассматривали вопрос о конденсации в протозвезды плотных холодных молекулярных облаков, на которые из-за гравитационной неустойчивости распадается газово-пылевой комплекс межзвездной среды. Здесь важно еще раз подчеркнуть, что этот процесс является закономерным , т. е. неизбежным . В самом деле, тепловая неустойчивость межзвездной среды, о которой шла речь в § 2, неизбежно ведет к ее фрагментации , т. е. к разделению на отдельные, сравнительно плотные облака и межоблачную среду. Однако собственная сила тяжести не может сжать облака — для этого они недостаточно плотны и велики. Но тут «вступает в игру» либо ударная волна, сжимающая межзвездную среду в спиральном рукаве (см. § 2), либо межзвездное магнитное поле и характерная для него неустойчивость Рэлея — Тэйлора. В системе силовых линий этого поля неизбежно образуются довольно глубокие «ямы», куда «стекаются» облака межзвездной среды (см. § 3). Это приводит к образованию огромных газово-пылевых комплексов. В таких комплексах образуется слой холодного газа, так как ионизующее межзвездный углерод ультрафиолетовое излучение звезд сильно поглощается находящейся в плотном комплексе космической пылью, а нейтральные атомы углерода сильно охлаждают межзвездный газ и «термостатируют» его при очень низкой температуре — порядка 5—10 кельвинов. Так как в холодном слое давление газа равно внешнему давлению окружающего более нагретого газа, то плотность в этом слое значительно выше и достигает нескольких тысяч атомов Н и молекул Н 2на кубический сантиметр. Под влиянием собственной гравитации холодный слой, после того как он достигнет толщины около одного парсека, начнет «фрагментировать» на отдельные, еще более плотные сгустки, которые под воздействием собственной гравитации будут продолжать сжиматься. Таким вполне естественным образом в межзвездной среде возникают ассоциации протозвезд. Каждая такая протозвезда эволюционирует со скоростью, зависящей от ее массы.
В § 3 мы уже рассматривали самую раннюю фазу эволюции протозвезды — фазу «свободного падения». Эта фаза кончается после того, как благодаря возросшей плотности протозвезда (которая до этого сжималась при более или менее постоянной температуре) станет непрозрачной к собственному инфракрасному излучению. После этого температура ее центральных областей начнет быстро расти. Таким образом, возникает большая разность температур между наружными и внутренними слоями. По этой причине освобождающаяся при сжатии гравитационная энергия должна каким-то образом «транспортироваться» наружу.
Дальнейшая эволюция протозвезды была теоретически рассчитана японским астрофизиком Хаяши, который первым обратил внимание на то, что транспорт энергии в сжимающейся протозвезде должен осуществляться путем конвекции (а не лучеиспусканием, как полагали астрономы до 1961 г., когда были опубликованы исследования Хаяши). Как будет рассказано в § 7, конвекция развивается тогда, когда другие возможности переноса вырабатываемой в недрах звезд энергии ограничены. В самых наружных, «фотосферных» слоях протозвезды механическая энергия бурных конвективных движений, которыми охвачен весь ее объем, должна трансформироваться в энергию излучения, уходящую в мировое пространство. В миниатюрном масштабе такая картина наблюдается в наружных слоях солнечной атмосферы — так называемой «хромосфере», сравнительно высокая температура которой поддерживается механической энергией волн от конвективных потоков, идущих из подфотосферных слоев Солнца. Но у нашего светила конвекцией охвачены только наружные слои. Гораздо более близкими к условиям в протозвезде являются условия в красных гигантах, большая часть объема которых до самой поверхности охвачена бурной конвекцией (см. рис. 11.3).
Температура, при которой энергия конвективных потоков переходит в энергию излучения, определяется многочисленными причинами, например, химическим составом и пр. Чисто эмпирически можно принять, что в поверхностных слоях протозвезды баланс между притоком механической энергии конвекции и излучением устанавливает температуру, близкую к температуре фотосфер красных гигантов, т. е.
3500 К. Более точные расчеты дают для температуры наружных слоев протозвезд несколько меньшее значение,
2500 К. Любопытно, что эти же расчеты приводят к зависимости температуры поверхности протозвезды от ее массы M и светимости L в виде
Читать дальше