Из-за наличия сильного магнитного поля излучение белых карликов должно быть слегка поляризовано по кругу. Изучая зависимость этой поляризации от времени, можно, в принципе, определить периоды вращения белых карликов. В тех немногих случаях, для которых эти очень деликатные наблюдения были выполнены, периоды осевого вращения оказались довольно значительными, порядка суток. Этот результат должен иметь существенное значение для проблемы звездной эволюции.
Некоторая часть красных гигантов у молодых звездных скоплений может быть протозвездами, находящимися в стадии сжатия и движущимися к главной последовательности. Однако, в принципе, их можно отличить от «настоящих» красных гигантов, являющихся более или менее «старыми» звездами (см. § 5).
Мысль о том, что красные гиганты образуются из звезд главной последовательности после выгорания ядерного горючего в недрах последних, впервые была высказана Э. Эпиком еще в 1938 г.
Следует, однако, иметь в виду, что содержание тяжелых элементов у разных шаровых скоплений меняется в довольно широких пределах. Более того, даже у одного скопления разные звезды иногда имеют разные Z. Действительность всегда богаче любой схемы.
Планетарные туманности в этих ближайших к нам галактиках удалены от нас на практически одинаковое расстояние, поэтому их светимости сравнительно легко определяются из видимых звездных величин.
Тщательные поляриметрические наблюдения доказали, что бывшая новая, вспыхнувшая в созвездии Геркулеса в 1934 г., вращается вокруг оси с периодом 142 секунды, причем скорость вращения постепенно растет. Такое быстрое вращение легко объясняется потоком газа от второй компоненты (красного карлика), приносящего большой вращательный момент.
Исключение могут составлять только самые центральные области таких галактик.
Исключение составляют позитроны.
Поэтому в формулах для синхротронного излучения, приведенных на стр. 460, вместо H надо поставить H — составляющую поля, перпендикулярную к скорости релятивистского электрона. Обычно H близко к H, и эта поправка принципиального значения не имеет.
У планетарных туманностей излучение единицы объема пропорционально N e 2 , а светимость всей туманности L N e 2 R 3 . Так как N e MR -3 (где M — масса туманности), то L M 2 R -3 , а интенсивность I M 2 R -5 . Отсюда следует, что расстояние до туманности r M 2/5 I -1/5 -1 , так как r = R/ .
В частности, Слайфер первый обнаружил красное смещение линий в спектрах удаленных галактик.
Наблюдаются и кванты с энергией 10 11 —10 12 эВ по вызываемым ими вспышкам черенковского излучения в земной атмосфере (см. § 20).
Теорию векового ускорения волокон Крабовидной туманности предложил в 1954 г. выдающийся советский астроном С. Б. Пикельнер.
На месте вспышки Сверхновой 1006 г. был обнаружен протяженный источник рентгеновского излучения.
Исключение, по-видимому, представляет процесс обогащения железом при вспышках сверхновых I типа (см. ниже).
Для этого нужно, конечно, чтобы звезда за время существования Галактики успела проэволюционировать, т. е. ее масса должна быть не меньше, чем 1,2 1,3M
Следует все же заметить, что некоторые «молодые» нейтронные звезды (возраст меньше 10 5 лет, а температура поверхности больше 10 6 К) могут быть обнаружены по их тепловому рентгеновскому излучению, Таких объектов, однако, сравнительно мало.
Буквы «СР» означают «Кембриджский пульсар», число «1133» означает, что прямое восхождение пульсара равно 11 часам 33 минутам.
Именно от этого пульсара было обнаружено гамма-излучение (см. § 16).
В настоящее время (1983 г.) самым коротким из известных орбитальных периодов обладает звезда 15 m AM Гончих Псов (1051,2 секунды или 17,5 минуты).
Периоды вращения некоторых бывших новых — компонент тесных карликовых систем — порядка десятков и сотен секунд (см. § 14).
Читать дальше