ряет расширение, как при инфляции. Фактически она действует в точности как космологическая постоянная, которую, как говорилось в главе 1, Эйнштейн добавил в свои первоначальные уравнения в 1917 г., когда понял, что они не допускают решения, соответствующего стационарной Вселенной. После открытия Хабблом расширения Вселенной основания для добавления в уравнения космологической постоянной исчезли, и Эйнштейн отбросил ее, как ошибку.
Однако она могла вовсе и не быть ошибкой. Как говорилось в главе 2, мы сейчас понимаем: квантовая теория указывает на то, что пространство-время заполнено квантовыми флук-туациями. В суперсимметричной теории бесконечные положительные и отрицательные энергии этих флуктуации основного состояния взаимно нейтрализуются частицами с разным спином. Но мы не можем ожидать, что положительные и отрицательные энергии компенсируют друг друга столь точно, что не останется даже небольшого конечного количества энергии вакуума, поскольку Вселенная не находится в суперсимметричном состоянии. Единственная неожиданность состоит в том, что эта энергия столь близка к нолю, что ее не обнаружили раньше. Возможно, это другое проявление антропного принципа. История с большей энергией вакуума не привела бы к образованию галактик и не содержала бы существ, которые задали вопрос «Почему энергия вакуума имеет то значение, которое мы наблюдаем?».
Не была ли космологическая постоянная моей величайшей ошибкой?
Альберт Эйнштейн
Рис. 3.20
Объединяя наблюдения далеких сверхновых и космического микроволнового излучения с данными о распределении вещества во Вселенной, можно с очень высокой точностью определить энергию вакуума и плотность вещества во Вселенной.
Количество вещества и энергии вакуума во Вселенной можно пытаться определять различными наблюдательными методами, а результаты представить на диаграмме, где плотность вещества отложена по горизонтальной оси, а энергия вакуума — по вертикальной. Пунктирная линия показывает границы области, в которой способна развиваться разумная жизнь (рис. 3.20).
Я бы и в ореховой скорлупе считал себя властелином необъятного пространства.
У. Шекспир. Гамлет. Акт 2, сцена 2
Наблюдения сверхновых, скопления галактик и микроволнового фона также задают свои области на этой диаграмме. К счастью, все три области имеют общее пересечение. Если плотности вещества и энергия вакуума попадают в это пересечение, это означает, что расширение Вселенной вновь начало ускоряться после долгого периода замедления. Похоже, инфляция может оказаться законом природы.
В этой главе мы показали, как поведение пространства Вселенной можно объяснить в терминах ее истории в мнимом времени, которая представляет собой крошечную, слегка сплющенную сферу. Что-то наподобие Гамлетовой скорлупы, только в этом орехе закодировано все, что случается в действительном времени. Так что Гамлет был совершенно прав. Мы можем быть заключены в ореховую скорлупку и все равно считать себя царями бесконечного космоса.
Глава 4. Предсказывая будущее
О том, как потеря информации в черных дырах может ослабить нашу способность предсказывать будущее
Рис. 4.1
Наблюдатель на Земле (синяя), обращающейся вокруг Солнца, наблюдает Марс (красный) на фоне созвездий.
Сложные видимые движения планет можно объяснить законами Ньютона, и они никак не влияют на личное счастье.
Человеческая раса всегда хотела контролировать будущее или, по крайней мере, предсказывать, что должно случиться. Именно поэтому столь популярна астрология. Она утверждает, что события на Земле связаны с движениями планет по небу. Это научно проверяемая гипотеза или могла бы быть таковой, если бы астрологи рискнули давать ясные предсказания, допускающие проверку. Но они достаточно умны, чтобы делать свои прогнозы столь туманными, что их можно отнести к любому исходу. Утверждения вроде «личные отношения могут стать интенсивнее» или «вам представится благоприятная в финансовом отношении возможность» никогда нельзя надежно опровергнуть.
Читать дальше