Идея о том, что движущееся тело так и будет двигаться с постоянной скоростью, если на него не действуют внешние силы, не очевидна, так как мы повсюду сталкиваемся с трением. Сложно вообразить обыденную ситуацию, в которой отсутствует всякое трение и, соответственно, нет воздействия внешних сил. Фигуристка почти не испытывает трения между коньками и льдом, поэтому она может сравнительно легко прокатываться по льду на большие расстояния. Когда трение стремится к нулю, объект достаточно подтолкнуть – и он станет двигаться с постоянной скоростью. Галилей это понял. Открытый космос предлагает самые яркие примеры отсутствия какого-либо трения. В космосе действительно можно запустить объект и не сомневаться, что он так и полетит равномерно с этой скоростью, поскольку ничто не встретится ему на пути. Ньютон сформулировал все эти принципы в виде базового закона.
Второй закон движения Ньютона описывает, что происходит с объектом, на который воздействует сила. На объект могут действовать разнообразные силы, но, независимо от конкретных сил, именно их сумма дает отклонение от равномерной скорости. Чтобы количественно выразить такое отклонение, используется термин « ускорение »: ускорение – это изменение скорости за единицу времени. Следовательно, второй закон соотносит ускорение объекта с силой, действующей на него. Если подтолкнуть объект с некоторой силой, то объект ускорится. Если объект обладает небольшой массой, то ускорение будет велико; с другой стороны, приложив ту же силу к более массивному объекту, мы сообщим ему меньшее ускорение. Данное отношение описывается самым знаменитым уравнением Ньютона F = ma : сила равна произведению массы на ускорение.
Третий закон Ньютона можно «запросто» сформулировать так: «Ты толкаешь меня – я толкаю тебя». Таким образом, если одно тело с силой воздействует на другое, то второе тело воздействует на первое с равной, но противоположно направленной силой. Если хлопнуть рукой по столешнице, то ощущается отдача: сопротивление стола. Сила действия равна силе противодействия.
Допустим, у вас на ладони лежит яблоко. Определенно оно находится в покое. Действуют ли на него какие-либо силы? Да, земная гравитация. Яблоко должно с ускорением лететь вниз, но этого не происходит. Дело в том, что вы удерживаете его рукой, словно подталкиваете вверх (на это затрачивается ваша мышечная сила). По третьему закону Ньютона, яблоко давит на ладонь – так ощущается вес яблока. Сила притяжения Земли действует на яблоко вниз, а сила вашей руки толкает яблоко вверх. Две эти силы компенсируют друг друга, их сумма равна нулю. Нулевая сила означает нулевое ускорение по второму закону Ньютона. Поэтому яблоко остается в покое и никуда не катится.
На самом деле все еще интереснее. Выше мы вычислили, что Земля облетает Солнце по кругу со скоростью 30 км/с, а значит, и яблоко движется с той же скоростью. Чтобы разобраться с этим, давайте сделаем отступление и поговорим о природе кругового движения.
При движении Земли по кругу со скоростью 30 км/с ее скорость является постоянной, но не является равномерной, так как направление движения Земли постоянно изменяется. Если бы направление не менялось, то Земля бы просто улетела по прямой, а не вращалась по кругу. Ускорение, возникающее при движении по кругу, встречается и в повседневной жизни. В развлекательных парках есть разнообразные аттракционы-горки, и на них такое ускорение пробирает вас насквозь.
Чтобы определить ускорение, испытываемое объектом, который движется с постоянной скоростью v по кругу радиусом r , Ньютон воспользовался собственноручно изобретенным дифференциальным исчислением. Такое ускорение равно v 2/ r , оно направлено к центру круга. Яблоко у вас на ладони, которое кажется неподвижным, на самом деле летит со скоростью 30 км/с по этому колоссальному кругу, причем с ускорением. По второму закону Ньютона на яблоко должна действовать какая-то сила, и эта сила – гравитационное притяжение Солнца. Солнце тащит Землю по орбите со скоростью 30 км/c, а вместе с ней тащит и яблоко. Яблоко испытывает силу солнечной гравитации, точно как вы и я.
Мы летим вокруг Солнца со скоростью 30 км/c. Учитывая, как велика эта скорость, кажется, что результирующее ускорение также должно быть огромным, но ускорение на самом деле невелико, поскольку радиус круга огромен. Давайте посчитаем. Скорость Земли равна 30 км/c или 30 000 м/c, а радиус земной орбиты – 150 000 000 000 м. По формуле v 2/ r ускорение a равно (30 000 м/c) 2/150 000 000 000 м = 0,006 м/с 2, или 0,006 метра в секунду за секунду. Таким образом, скорость Земли ежесекундно меняется на 6 миллиметров в секунду. Величина крошечная. Галилей открыл, что тела падают на Землю под действием земного притяжения с ускорением примерно 9,8 метра в секунду за секунду, это значение гораздо больше. Следовательно, пусть мы и летим вокруг Солнца с огромной скоростью, Земля при этом ускоряется совершенно незначительно. Напротив, на американских горках наша скорость куда ниже 30 км/c, но радиус круга, по которому мы движемся, крохотный; подставив это меньшее значение r в формулу v 2/ r , получаем довольно большое ускорение, которое весьма ощутимо. (Так, если радиус горок – 10 метров, а вы летите по ним со скоростью 10 м/c, то получается ускорение 10 метров в секунду за секунду).
Читать дальше
Конец ознакомительного отрывка
Купить книгу