Человечеству на Земле тоже нужен более эффективный фотосинтез. Мы почти достигли пределов Зеленой революции. Без новых скачков производительности Земля может оказаться слишком маленькой для того, чтобы прокормить всех той пищей, к которой мы привыкли. Нам также нужен новый вид топлива. Нефть для транспорта, особенно авиации, необходимо заменить углеродно-нейтральными жидкими топливами высокой энергетической плотности (самолеты на солнечной энергии возможны, но только в узких сферах использования). В солнечном свете, освещающем Землю, достаточно энергии, чтобы питать все наши автомобили и самолеты и кормить нас, но только если мы найдем способ более эффективно его собирать и преобразовывать в жидкую или твердую форму.
Солнечные батареи уже собирают энергию солнечного света гораздо эффективнее растений. Фотоны, падающие на кремний, выбивают электроны и создают электрический ток. Панели, которые можно купить для установки на крыше, дают впечатляющую эффективность от 13 до 20% — именно такая доля солнечной энергии, падающей на фотоэлемент, преобразуется в электрический ток. Благодаря своей эффективности солнечные батареи уже могут соревноваться с электрической сетью [96] Для корректного сравнения нужно включить в расчет капиталовложения в строительство традиционных и солнечных электростанций и оборудования для них наличие необходимых ресурсов, стоимость ископаемого или ядерного топлива, рассматривать не идеальную эффективность фотоэлементов, а реальную среднегодовую для условий конкретного места и его освещенности, принять во внимание срок службы электростанций различных типов и, вообще говоря, учесть расходы на утилизацию. — Прим. науч. ред.
, но они не производят топлива. (К этому результату приближается разработка Национальной лаборатории имени Лоуренса в Беркли, использующая солнечную энергию для производства электролизом водорода, который затем скармливается бактериям, соединяющим его с углекислым газом и производящим метан.)
Процесс создания топлива в листьях и водорослях гораздо сложнее и отличается от вида к виду и от местообитания к местообитанию. Фотосинтез возник в ходе эволюции и оказался ключевым фактором. Ни один человек не нашел лучшего способа производить твердое топливо из солнечного света и атмосферного углекислого газа. Роберт Бланкеншип, профессор биологии и химии из Университета Вашингтона в Сент-Луисе, пытался разобраться в химии фотосинтеза с 1970-х гг., когда учился в аспирантуре, и до сих пор не выведал всех секретов растений.
Благодаря фотонам атомы углерода и водорода соединяются в молекулы сахаров — основного стройматериала биосферы, способного хранить энергию миллионы лет в виде ископаемого топлива. При разрыве этих химических связей, например сжигании органических материалов, их переваривании или гниении, энергия высвобождается. Эта система питает почти всю жизнь на Земле, улавливая в целом менее 1% солнечного света, падающего на растения. Этот 1% до сих пор оказывался достаточен благодаря тому, что Земля велика, а Солнце светит ярко. Растения придают планете зеленую окраску и при этом теряют более 99% получаемого ими солнечного света.
Бланкеншип и прочие исследователи этой области определили ряд энергопотерь в химии фотосинтеза растений. Яркий свет может вызывать сбои в химии растений, поэтому листья сбрасывают излишки энергии в жаркий полдень. Фотосинтез основан на связывании атомов углерода энзимом под названием рибулозобисфосфаткарбоксилаза (рубиско), который реагирует и с кислородом, что приводит к потере большей части энергии, получаемой растением. Также к потерям энергии приводят способ транспортировки CO 2из клетки в клетку, использование ими света разной длины волны и другие процессы, понятные только химикам.
Эволюция не создает совершенных организмов. Она создает виды, которые достаточно хороши для размножения. Фотосинтез далеко не совершенен, поскольку успех воспроизводства растения определяется не только эффективностью захвата и хранения энергии, но и другими факторами. Например, растение, которое способно к фотосинтезу при слабом освещении и сбрасывает излишки энергии в полдень, получает преимущество в густом лесу или на лугу. Энзим рубиско мог развиться во времена, когда кислорода на Земле было мало, и он ничего не стоил системе фотосинтеза. Большую часть времени растения сталкиваются не с пределами энергоэффективности, а с другими препятствиями вроде недостатка воды и питательных веществ, физическими факторами вроде ветра, наводнений, жары, причиняющих ущерб, или соревнуются с конкурирующими организмами.
Читать дальше
Конец ознакомительного отрывка
Купить книгу