Добавим, что предсказание закона всемирного тяготения о том, что приливы с полусуточным периодом должны доминировать, также не подтверждается практикой. Из вышеизложенного ясно, что приливообразующих воздействий с полусуточным периодом не существует. И, действительно, в открытых океанах, т.е. на подавляюще большей площади Мирового океана, почти безраздельно властвуют суточные приливы. На окраинных морях наблюдаются смешанные суточно-полусуточные приливы, а в малых морях, проливах и больших бухтах – полусуточные. Традиционно, господство суточного типа приливов в открытых океанах объясняют «большими суточными неравенствами» - как будто склонение Луны проявляется в открытом океане как-то иначе, чем вблизи побережий на тех же широтах. Давайте же обратим внимание на то, что чем меньше площадь и глубина участка океана, в котором вращается приливная волна, тем более смещён в короткопериодическую сторону спектр приливных колебаний этого участка. Напрашивается очевидный вывод: в приливных колебаниях не последнюю роль играют резонансные явления. Эта идея не нова; она высказывалась, например, в [Д3,Ш2], но не получила развития. А ведь наличие резонансов кардинально изменяет физику приливных явлений, поскольку здесь уже не работает принцип линейной суперпозиции возмущающих воздействий. Действительно, здесь отклики на воздействия с различными периодами должны иметь различные «коэффициенты передачи»: сильнее должен быть отклик на то воздействие, период которого ближе к резонансному. Более того, само происхождение полусуточных приливов оказывается следствием генерации второй гармоники при суточном воздействии! В пользу этого вывода свидетельствует и тот факт, что в некоторых малых мелководных областях – например, в Кандалакшском заливе Белого моря – наблюдаются четвертьсуточные приливы [Ш2]!
Следствием такого подхода, проверенным нами с помощью несложных машинных экспериментов [Г13], является то, что почти все основные и промежуточные типы приливов оказывается возможным промоделировать, считая их результатами совместного действия всего двух первичных возмущений: солнечно-суточного и лунно-суточного – с допущением генерации вторых гармоник!
Итак, учёт феномена вращательных уклонений местных вертикалей ставит на свои места и полюса Земли, и настоящие источники приливных явлений в океанах. А ещё он помогает поставить на место фирму PASCO ( 2.2), которая производит игрушечные установки для повторения опыта Кавендиша. Правда, разработчики этих игрушек применили важное новшество: подвес коромысла сделан не нитевидным, а ленточным – из бериллиевой меди, с поперечным сечением 0.017х0.150 мм [П5]. В отличие от нитевидного, ленточный подвес и вынуждает коромысло немного довернуться при достаточном для этого уклонении местной вертикали. Причём, доворот произойдёт в том же направлении, что и вращательное уклонение вертикали, т.е. по часовой стрелке, если смотреть сверху. Вот почему изготовители просят [П5], при смене позиций «притягивающих» шаров, не путать, какая позиция является первой, а какая второй – иначе вместо «притяжения» обнаружится «отталкивание». Ну, и ещё: размахи вращательных уклонений местных вертикалей зависят от фаз Луны: они максимальны в квадратурах, а в сизигиях они нулевые. Те, кто уже приобрели установку фирмы PASCO, могут убедиться: в новолуния и полнолуния фирменные болваночки теряют «притягивающие» свойства!
Но не всегда гуляния вертикалей являются таким полезным эффектом: толпы геодезистов и гравиметристов уже покрыли их матом во множество слоёв. «Ничего не поделаешь, - разъясняют теоретики, - дело в несовершенстве приборов, у которых имеется дрейф нуля». Да нет, приборы здесь не виноваты: « дрейф нуля сейсмометра, установленного в Ленинграде, подобен дрейфу нуля гравиметра, установленного под Алма-Атой… Такое подобие показаний приборов разной конструкции не может быть объяснено ни аппаратурной погрешностью, ни локальными процессами… временной ход этой глобальной вариации коррелирует с лунными фазами » [А7]. Так что на зеркало неча пенять, коли рожа крива!
А1. К.У.Аллен. Астрофизические величины. «Мир», М., 1977.
А2. J.D.Anderson, P.A.Laing, E.L.Lau, et al. Phys.Rev.Lett., 81, 14 (1998) 2858.
А3. M.E.Ash, I.I.Shapiro, W.B.Smith. Astr. Journal, 72, 3 (1967) 338.
А4. Э.Л.Аким и др. ДАН СССР, т.201, 6 (1971) 1303.
А5. J.D.Anderson et al. Science, 167, 3916 (1970) 277.
А6. К.Б.Алексеев, Г.Г.Бебенин, В.А.Ярошевский. Маневрирование космических аппаратов. «Машиностроение», М., 1970.
Читать дальше