«…пределы изменений аномалий в свободном воздухе должны быть от –350 мГал (для океана глубиной 5 км) до +450 мГал (для плоскогорья высотой 4 км). Аномалии Буге должны равняться нулю.
Однако оказалось, что результаты наблюдений противоречат этой теоретической зависимости. Аномалии в свободном воздухе почти не выходят за пределы ±50 мГал, а огромное большинство аномалий вообще близко к нулю. В то же время аномалии Буге в горных районах оказываются, как правило, отрицательными и довольно значительными по величине. Так, в западном Тибете, Памире, Куэнь-Луне аномалии Буге колеблются в пределах от –250 мГал до –550 мГал, в Мексиканском нагорье достигают –200 мГал, в Альпах –150 мГал. Напротив, в Атлантическом и Тихом океанах они имеют положительные значения от 300 до 400 мГал. »
«…длинные полосы отрицательных аномалий… прослеживаются вдоль западного берега Южной и Центральной Америки, вдоль Алеутской островной дуги,… вдоль внешнего края дуги Суматра-Ява, вдоль Пуэрто-Рико, по дуге Южных Сандвичевых островов… Всюду эти аномалии или совпадают с глубоководными желобами, или идут по их краю» .
Таким образом, имеет место чёткая закономерность: если при гравиметрической съёмке не вводить поправок на влияние поверхностных масс, а использовать только поправку «за свободный воздух», то аномалии силы тяжести везде становятся близкими к нулю. Но считается, что поверхностные массы не могут не оказывать влияния на гравиметр, поэтому вычисляются и вносятся поправки, которые и дают аномалии, равные по величине этим поправкам. А затем, чтобы обнулить аномалии и привести теоретические значения в согласие с измеренными, применяют всё ту же остроумную гипотезу об изостазии.
Думаете, не может быть такого плачевного состояния дел в науке? Может, может. А вот чего не может быть – так это изостатической компенсации. И по очень простой причине. Вот, пусть под поверхностью грунта находится локальное включение с повышенной плотностью, а под ним – компенсирующее включение с пониженной плотностью. Заметим, что если сила тяжести над этими включениями равна силе тяжести над участком с нормальной плотностью, то в стороне от этих включений компенсация уже не имеет места: изостатический диполь «притягивает» иначе, чем аналогичный участок с нормальной плотностью, что должно вызвать соответствующее уклонение отвеса. При заданном неоднородном распределении поверхностных масс, никаким распределением компенсирующих масс нельзя добиться сразу и нулевых уклонений отвеса, и нулевых аномалий силы тяжести: изостазия для отвесов и изостазия для гравиметров - несовместимы. На практике же повсеместно нулевые уклонения отвеса наблюдаются вместе с нулевыми аномалиями силы тяжести (если не вводить излишних поправок). Т.е. практика с полной очевидностью показывает: гравиметрические инструменты не реагируют на распределение масс. А почему? Наука до сих пор не выработала ответа на этот вопрос. А мы отвечаем: потому что массы не обладают притягивающим действием.
И не только для поверхностных масс Земли справедлив этот вывод – гравиметрия позволяет обобщить его на всё вещество Земли. Это возможно с помощью измерений под поверхностью геоида, проводимых в шахтах или на борту погрузившегося под воду батискафа. Смотрите: согласно закону всемирного тяготения, земная сила тяжести в приближении, когда Земля считается однородным невращающимся шаром, максимальна на поверхности этого шара. Ведь, при подъёме над поверхностью, ускорение свободного падения уменьшается согласно выражению GM З/ r 2, где G - гравитационная постоянная, M З- масса Земли, r - расстояние до её центра. А, при погружении под поверхность, ускорение свободного падения уменьшается из-за того, что уменьшается «притягивающая» масса, поскольку равно нулю суммарное действие масс в поверхностном шаровом слое с толщиной, равной глубине погружения. При этом ускорение свободного падения линейно зависит от расстояния до центра Земли: GM З r/R 3, где R - радиус Земли. Таким образом, в названном приближении, на поверхности Земли имел бы место излом (а также смена знака!) зависимости ускорения свободного падения от расстояния до центра Земли. Если же, как мы утверждаем, тяготение порождается не массами, и геометрия частотных склонов ( 1.6) задана независимо от распределения масс, то и у зависимости ускорения свободного падения от высоты нет излома на поверхности Земли – функция ~1/ r 2сохраняет свой вид при заглублении под поверхность. Именно это и показывают «сырые», нескорректированные данные измерений. Чтобы не афишировать эти убийственные для закона всемирного тяготения факты, авторы публикаций о тяготении в шахтах придерживаются следующих правил:
Читать дальше