Но вернёмся к нашей модели. Мы можем объяснить – по крайней мере, качественно – почему чётно-чётные ядра имеют систематически большую энергию связи на нуклон. Эта величина, как можно видеть, зависит от того, насколько оптимально синхронизированы переключения связей в ядре. При нечётном числе протонов, какому-то из них всегда будет недоставать компаньона, чтобы, вместе с двумя нейтронами, образовать α-комплекс – отчего переключения связей будут происходить не в оптимальном режиме. Ещё менее оптимально они будут происходить и при нечётном числе нейтронов: даже в условиях их «избыточности», при оптимальных переформированиях α-комплексов нейтроны сменяются парами – для чего именно парами они и должны быть рассредоточены по объёму ядра. Кстати, тем, что ядерная связь возможна лишь между протоном и нейтроном, легко объясняется тот факт, что в природе не бывает нуклонных комплексов из одних протонов или одних нейтронов.
Добавим, что предложенная модель ядерных сил объясняет – по крайней мере, качественно – главную особенность расположения ядерных уровней энергии, о которых судят по спектрам характеристического гамма-излучения. В отличие от атомных уровней, которые сгущаются при приближении к уровню ионизации, промежутки между ядерными уровнями примерно постоянны – « удивительным является то, что возбуждаемые уровни располагаются со столь правильными интервалами » [Д8]. Между тем, эта особенность ядерных спектров является, в нашей модели, следствием резонансных соотношений в связанных нейтронах. Врезка на Рис.4.12 иллюстрирует происхождение резонансных соотношений между частотами нуклонных пульсаций и ядерных прерываний: на полупериоде второй из них должно укладываться целое число полупериодов первой. При этом характерный промежуток между ядерными уровнями составляет около 0.4 МэВ [Г6] – что согласуется с опытными данными [Д8]. Кроме того, мы усматриваем ещё одно резонансное соотношение: на периоде электронных пульсаций должно укладываться целое число периодов ядерных прерываний. Результирующее разделение подуровней составит около 14 кэВ [Г6], а полные ширины ядерных линий, из-за этого тонкого расщепления, могут составлять сотни кэВ (см., например, [Л6]).
Как можно видеть, наш ключевой тезис, позволяющий объяснить особенности ядерных спектров, таков: возбуждается не ядро в целом, возбуждаются отдельные α-комплексы в нём. Конечно, наше объяснение особенностей ядерных спектров можно рассматривать лишь в качестве первого приближения. Но другие модели ядерных сил, насколько нам известно, не дают объяснения этих особенностей даже в первом приближении – ограничиваясь лишь классификацией ядерных уровней.
Наконец, кратко остановимся на ещё одном феномене - β +-распаде, который, в отличие от β --распада, должен происходить весьма необычно. Действительно, при β --распаде ядерный нейтрон превращается в протон с выстреливанием электрона, т.е. происходит обычный распад нейтрона. Но при β +-распаде ядерный протон превращается в нейтрон с выстреливанием позитрона. Мало того, что такое превращение не обеспечено собственной энергией протона – и, как полагают, недостающая энергия « восполняется ядром » [М3]. Для превращения протона в нейтрон с освобождением позитрона требуется, с учётом вышеизложенных представлений о протоне и нейтроне, участие ещё одной частицы – предельно связанной пары (). Напомним, что в такой паре электрон связан с позитроном, причём энергия связи составляет 511 кэВ. Такая пара имеет массу электрона и нулевой электрический заряд – т.е., известный зарядовый дублет лептонов, e -и e +, можно дополнить до триплета e -, e +и e 0, где символом e 0мы обозначили предельно связанную пару. И реакция, происходящая при β +-распаде, имеет, как мы полагаем, следующий вид:
p ++ e 0-> n 0+ e +.
При допущении такой реакции, вышеназванные затруднения в представлениях о β +-распаде устраняются.
Мы, конечно, не претендуем на полный охват огромного пласта экспериментальных данных – по физике атомного ядра. Мы постарались, на основе новой модели, объяснить лишь основные свойства ядер.
4.13. Происхождение энергии деления тяжёлых ядер.
Хорошо известно, что энергия деления тяжёлых ядер, которая используется в практических целях – это кинетическая энергия осколков исходных ядер (см., например, [М3]). Но каково происхождение этой энергии, т.е. какая энергия превращается в кинетическую энергию осколков?
Читать дальше