Вот почему наука недостоверна. Как только вы скажете что-нибудь об области опыта, с которой непосредственно не соприкасались, вы сразу же лишаетесь уверенности. Но мы обязательно должны говорить о тех областях, которых никогда не видели, иначе от науки не будет проку. Например, при движении тела его масса меняется из-за сохранения энергии. Из-за эквивалентности массы и энергии энергия, связанная с движением, проявляется как дополнительная масса. Двигаясь, тела становятся тяжелее. Ньютон был другого мнения. Он считал, что массы постоянны. Когда обнаружилось, что представления Ньютона неверны, все говорили: "Это ужасно! Физики нашли у себя ошибку! Почему же они думали, что они правы?"
Эффект этот очень мал и проявляется только при скоростях, близких к скорости света. Если вы запустите волчок, то масса его останется такой же, как и в спокойном состоянии, с точностью до ничтожной дроби. Но тогда они должны были бы говорить так: "Если скорость не превышает такого-то значения, масса волчка не меняется". Все было бы ясно, не правда ли? Но нет. Ведь опыты проводились только с деревянными, медными и стальными волчками, пришлось бы говорить: "Когда волчки, сделанные из меди, дерева и стали, крутятся не быстрее, чем с такой-то скоростью..." Как видите, мы не знаем всех условий, необходимых для опыта. Неизвестно, будет ли сохраняться масса радиоактивного волчка. Поэтому, если мы хотим, чтобы от науки была какая-то польза, мы должны строить догадки. Чтобы наука не превратилась в простые протоколы проделанных экспериментов, мы должны выдвигать законы, простирающиеся на еще не изведанные области. Ничего дурного тут нет, только наука оказывается из-за этого недостоверной. А если вы думали, что наука достоверна, - вы ошибались.
Итак, возвращаясь к нашему списку законов сохранения (см. табл. 1), мы можем внести туда энергию. Насколько нам известно, она сохраняется в точности. Элементарной единицы энергии не существует. Далее, является ли она источником поля? Да. Эйнштейн считал, что гравитация порождается энергией. Энергия эквивалентна массе, и, следовательно, мысль Ньютона, что гравитация порождается массой, трансформировалась в утверждение, что гравитацию производит энергия.
Существуют другие сохраняющиеся величины, подобные энергии в том смысле, что они являются числами. Одна из них - количество движения. Если взять все массы системы, перемножить их на скорости и сложить, то сумма будет количеством движения системы; полное количество движения системы сохраняется. Согласно нынешним представлениям энергия и количество движения тесно связаны, поэтому я поместил их в одном столбце.
Еще пример сохраняющейся величины - момент количества движения, о котором мы уже говорили. Например, если у нас есть движущееся тело и мы выберем произвольный центр, то скорость увеличения площади (рис. 20), описываемая отрезком, соединяющим тело с центром, умноженная на массу тела, называется моментом количества движения. Таким образом, момент количества движения численно равен площади, описываемой отрезком, соединяющим тело с центром, при движении тела за единицу времени. Сложив моменты всех тел, входящих в систему, мы получим момент количества движения системы.
Эта величина не меняется. Итак, мы имеем сохранение момента количества движения. Кстати, многим часто кажется, будто момент количества движения не сохраняется. Подобно энергии, он проявляется в различных формах. Большинство людей думают, будто он связан только с движением, но я покажу вам, что он проявляется и в других формах. Если в проволочную катушку вдвигать магнит, то магнитное поле, магнитный поток внутри нее, увеличится и по проводу пойдет электрический ток. Вообразите, что вместо провода - диск. в котором имеются электрические заряды наподобие электронов в проволоке (рис. 21). Теперь я пододвигаю издалека магнит, вдвигаю очень быстро вдоль оси, точно в середину, и магнитный поток изменяется. Так же как и в проволоке, магнитные заряды начинают двигаться по кругу, и, если диск насажен на подшипник, он закрутится. Это не похоже на сохранение момента: когда магнит далеко от диска, диск не поворачивается, а когда близко - диск крутится.
Мы получили вращение задаром, а это против правил. "Ах, так, - скажете вы, - значит, должно существовать какое-то другое взаимодействие, заставляющее магнит крутиться в обратную сторону". Ничего похожего.
Читать дальше
Конец ознакомительного отрывка
Купить книгу