Айзек Азимов - Нейтрино - призрачная частица атома

Здесь есть возможность читать онлайн «Айзек Азимов - Нейтрино - призрачная частица атома» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1969, Издательство: Атомиздат, Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Нейтрино - призрачная частица атома: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Нейтрино - призрачная частица атома»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В книге известного популяризатора науки А. Азимова в живой и популярной форме изложены современные представления о самой неуловимой частице микромира — нейтрино. Азимов прослеживает цепь событий, приведших физиков к открытию нейтрино, рассказывает о том, как эту частицу научились регистрировать, о ее роли в эволюции Вселенной, о последних достижениях нейтринной физики — двухнейтринном эксперименте. Автор стремится раскрыть перед читателем современную физическую картину мира, но в то же время не подавить его массой сведений, столь обширных в этой области науки.
Книгой заинтересуются самые широкие круги читателей: школьники, преподаватели и те, кто следит за новейшими достижениями физики.

Нейтрино - призрачная частица атома — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Нейтрино - призрачная частица атома», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фотоны инфракрасного излучения обладают меньшими энергиями. Они невидимы, но мы можем ощущать их как тепло, поглощаемое кожей. Энергии фотонов ультракоротких и радиоволн еще меньше.

Обладающие большими энергиями фотоны ультрафиолетового излучения, испускаемого при некоторых химических реакциях, тоже невидимы, но их можно легко обнаружить по воздействию на фотопластинку. Длины волн ультрафиолетового света так малы, что энергия фотонов достигает 1000 эв. За областью самого коротковолнового ультрафиолетового света лежит область еще более коротких рентгеновских лучей, энергия фотонов которых находится в диапазоне от 1 до 100 кэв. И, наконец, энергии фотонов γ-лучей лежат в области миллионов электронвольт. Не удивительно поэтому, что ядерные реакции, освобождающие энергию в миллионы электронвольт, приводят в результате к образованию γ-квантов.

Какой массе эквивалентны фотоны? Для сравнения больше всего подходит масса электрона, равная 1/1836,11 массы ядра водорода и эквивалентная 0,51 Мэв, так как энергия, эквивалентная массе протона, значительно больше энергии даже самых коротковолновых фотонов γ-излучения. Энергия фотона видимого света в среднем равна 2,5 эв, следовательно, эквивалентная ей масса представляет собой лишь 1/200 000 массы электрона, т. е. без большой погрешности можно считать, что фотоны видимого света не имеют массы.

Эквивалентная масса фотонов возрастает по мере уменьшения длины волны излучения. γ-Излучение с длиной волны 2,4 · 10 -10 см состоит из фотонов, масса которых равна массе электрона. Следовательно, корпускулярные свойства фотонов γ-излучения легко обнаружить прибором, используемым при изучении электронов.

Это было проделано в 1923 году американским физиком Артуром Холли Комптоном. Он обнаружил, что фотон рентгеновских лучей с эквивалентной массой, гораздо меньшей, чем у электрона, сталкиваясь с электроном, отскакивает от него рикошетом. Электрон получает энергию. а фотон теряет ее, как и в случае столкновения двух электронов. Более того, фотон ведет себя как частица, обладающая импульсом. При взаимодействии его с электроном выполняется закон сохранения импульса.

Так, еще раз была подтверждена корпускулярная природа света, обладающего и волновыми свойствами. Именно Комптон предложил назвать квант света «фотоном», используя суффикс «он», ставший отличительным признаком для названий субатомных частиц, после того, как двадцатью пятью годами раньше был открыт электрон.

Корпускулярные свойства фотонов γ-излучения выражены сильнее, чем фотонов рентгеновских лучей. Когда γ-кванты излучаются в процессе ядерной реакции, необходимо учитывать их импульс. Более того, фотон обладает спином, и следовательно, моментом количества движения. Поэтому, применяя законы сохранения импульса и момента количества движения к ядерным реакциям, надо учитывать импульс и момент количества движения фотона.

Хотя фотон γ-излучения и электрон эквивалентны по массе, между ними есть разница, так как эквивалентность не означает идентичность.

Рассмотрим, например, массу электрона, который может двигаться относительно наблюдателя с любой скоростью от 0 до 3 · 10 10 см/сек. Масса электрона или любого материального тела при этом меняется со скоростью от минимального значения, когда тело покоится, до бесконечно большого, когда его скорость максимальна [12] [12] Специальная теория относительности Эйнштейна предсказала этот результат, и он действительно был подтвержден экспериментом. Увеличение массы совершенно ничтожно, пока скорости не достигнут тысяч километров в секунду. В обычной жизни можно совершенно спокойно считать массу постоянной. .

Масса тела, покоящегося относительно наблюдателя, называется массой покоя, и именно ее обычно имеют в виду, когда говорят просто «масса». Когда, например, говорят, что масса электрона равна 9,1091 · 10 -28 г, всем понятно, что это масса покоя. Электроны часто сталкиваются, двигаясь со скоростями, равными или большими, чем 0,99 скорости света в вакууме, причем их массы в семь или более раз превышают массу покоя.

В вакууме фотон всегда летит со скоростью света относительно любого наблюдателя [13] [13] В другой прозрачной среде, не в вакууме, фотоны летят с меньшими скоростями. Даже воздух замедляет их движение. Однако, когда фотоны покидают прозрачную среду и входят снова в вакуум, их скорости тотчас же возрастают до 3 · 10 10 см/сек . . Это исходное положение специальной теории относительности Эйнштейна. Так как фотон никогда не покоится относительно какого-либо наблюдателя, нельзя измерить его массу покоя непосредственно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Нейтрино - призрачная частица атома»

Представляем Вашему вниманию похожие книги на «Нейтрино - призрачная частица атома» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Нейтрино - призрачная частица атома»

Обсуждение, отзывы о книге «Нейтрино - призрачная частица атома» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x