Величина этой исчезнувшей массы, равной примерно 1/ 34массы нуклона, кажется малой, но она слишком велика, чтобы ею можно было пренебречь. Если закон сохранения массы справедлив, он не должен зависеть от точности измерений.
При тщательном исследовании ядерных реакций всегда обнаруживали небольшое расхождение между массами атомов в начале и в конце реакции. Следовательно, закон сохранения массы, установленный Лавуазье двести лет назад, не всегда выполняется, по крайней мере в атомном мире. Иными словами, обобщение оказалось не совсем законным.
С изобретением прибора, названного масс-спектрографом появилась возможность измерить массу отдельных атомных ядер с такой точностью, чтобы обнаружить несостоятельность закона сохранения массы. Прибор был сконструирован английским физиком Фрэнсисом Уильямом Астоном в 1919 году и через несколько лет получил всеобщее признание. Однако к этому времени ошибочность обобщения Лавуазье, так долго служившего основой химии, не была еще полностью доказана. Правда, она была предсказана еще в 1905 году физиком Альбертом Эйнштейном (уроженцем Германии, в то время работавшим в Швейцарии) на основе убедительных теоретических соображений.
Теория Эйнштейна, названная специальной теорией относительности, возникла как следствие неспособности физиков измерить изменения скорости света при условиях, когда законы движения Ньютона предсказывали, что такие изменения должны быть. Поэтому Эйнштейн попытался создать систему обобщений, в которой скорость света оставалась бы неизменной.
Предположения Эйнштейна в корне отличались от ньютоновских, но в обычных условиях обе теории приводили к одинаковым выводам. (Это необходимо, так как Вселенная остается Вселенной, и ее свойства не меняются в зависимости от теории.) Разница между эйнштейновским и ньютоновским взглядами на Вселенную становилась заметной только при исключительно больших скоростях, близких к скорости света.
Эти исключительные условия были изучены, и в каждом случае обнаружено большее соответствие теории Эйнштейна. Специальная теория относительности Эйнштейна теперь окончательно принята физиками, и в течение полувековых исследований ничто еще не потрясло ее основы [11] [11] Тем не менее, законы Ньютона гораздо проще выразить математически, и они все еще используются во многих разделах физики и будут использоваться всегда, когда простота важнее точности.
.
Основное положение теории Эйнштейна состоит в том, что ни одна из измеренных скоростей не может быть больше скорости света в вакууме. Максимальная измеренная скорость равна 299 792,5 км/сек, или приблизительно 3 · 10 10 см/сек. Кроме того, теория рассматривает массу и энергию как разные формы одной и той же сущности. Масса ведет себя как чрезвычайно компактная форма энергии, а энергия является распределенной формой массы. Эйнштейн вывел соотношение между этими двумя формами, которое выражается ставшим теперь знаменитым уравнением
е = тс 2,
где е обозначает энергию, т — массу, а с от латинского слова celeritas, означающего «скорость», — скорость света в вакууме.
Если в этом уравнении массу выразить в граммах, скорость света — в сантиметрах в секунду, то энергия получится в эргах. Поскольку скорость света очень велика, а квадрат ее еще больше, крошечной массе соответствует громадная энергия. Так, массе в 1 г соответствует энергия, равная 9 10 20 г·см 2/сек 2, или 9 · 10 20 эрг. Эквивалентом этого количества энергии является энергия 100-ваттной лампочки накаливания, горящей в течение тридцати пяти тысяч лет.
Из эквивалентности массы и энергии по теории Эйнштейна следует, что если система теряет энергию, то она теряет эквивалентную этой энергии массу, и наоборот.
Понятно, почему при обычных химических реакциях кажется, что масса сохраняется, — изменения энергии такого порядка, что вызывают неизмеримо малые изменения массы. Рассмотрим, например, сгорание бензина, химическую реакцию, при которой выделяется довольно большое количество энергии. Литр бензина весит 700 г и выделяет, сгорая, 8 000 000 кал, или 3,4 · 10 14 эрг, которые эквивалентны всего лишь 4 · 10 - 7г.
Заметить исчезновение четырех десятимиллионных грамма из общей массы порядка тысячи граммов было за пределами возможностей химии XIX века. Поэтому даже наиболее точные измерения не обнаружили противоречия в законе сохранения массы. Закон сохранения массы используется до сих пор при рассмотрении химических реакций.
Читать дальше