Питер Эткинз - Десять великих идей науки. Как устроен наш мир.

Здесь есть возможность читать онлайн «Питер Эткинз - Десять великих идей науки. Как устроен наш мир.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Физика, Биология, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Десять великих идей науки. Как устроен наш мир.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Десять великих идей науки. Как устроен наш мир.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.

Десять великих идей науки. Как устроен наш мир. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Десять великих идей науки. Как устроен наш мир.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Не существует доказательства Предложения 2 относительно числа 2.

Теперь мы подходим к противоречию. Предположим, что мы узнали, обратись к полному списку доказуемых утверждений, что это предложение действительно верно (а значит, его гёделевский номер должен быть в списке доказуемых утверждений), то есть можно доказать, что доказательства Предложения 2 относительно числа 2 не существует. Тогда у нас получается противоречие, поскольку, если не существует доказательства Предложения 2 относительно числа 2, то его номера не должно быть в списке доказуемых утверждений! Если мы вместо этого предположим, что предложение о том, что не существует доказательства Предложения 2 относительно числа 2, является ложным, тогда его нет в списке доказуемых утверждений, а тогда это предложение истинно!

Мы достигли точки, в которой нам приходится заключить, что система аксиом, которой мы пользуемся, недостаточна для того, чтобы принять решение о том, что верно: это предложение или его отрицание. Математика неполна . Это означает, что существует бесконечное число математических утверждений, которые, возможно, верны, но не могут быть выведены из данного множества аксиом. В этом состоит основание для одного из моих вводных замечаний. Удивительно не только то, что мы можем считать (поскольку натуральные числа столь редки во вселенной всех чисел), удивительно, что мы можем делать с числами что-то арифметическое (потому что формально доказуемые выражения являются тоже очень редкими).

Заключение Гёделя не стало судным днем математики. Во-первых, могут существовать неалгоритмические методы установления истинности утверждений, так же как может быть невозможно формально доказать, что определенная позиция в шахматах не приводит к мату, но ее можно увидеть с более объемлющей точки зрения. То есть может существовать метаматематическое доказательство утверждения, которое не может быть доказано внутри формальной системы. То, что человеческий ум способен порождать такие неформальные, но вполне надежные доказательства, является окном в природу сознания, ибо это показывает, что понимание и рефлексия не нуждаются в том, чтобы быть алгоритмическими.

Математика прошла через три главных кризиса в своей истории. Первым было открытие древними греками несоизмеримости и существования иррациональных чисел, обрушившее философию пифагорйцев. Вторым было появление дифференциального исчисления в семнадцатом веке, сопровождавшееся страхом, что иметь дело с бесконечно малыми незаконно. Третьим кризисом стало столкновение с антиномиями в начале двадцатого века, такими как антиномия Рассела или парадокс Берри, которые, как казалось, подорвали основы этой науки. В свете этого кажется замечательным, что математика выжила как дисциплина. Тем, что это произошло, мы обязаны старому доброму здравому смыслу: существует огромная и чудесная наука математика, которая, по-видимому, превосходно работает, и было бы глупо отметать предмет, приводящий к таким замечательным успехам, даже если и есть ненадежные области в глубинах его структуры. Работающие математики могут продолжать трудиться без страха и не заботясь о трещинах глубоко в основании, которые, как они предполагают, навряд ли могут проложить себе путь на поверхность в любом. актуальном приложении. Второй причиной, конечно, является то, что математика просто слишком полезна и является наилучшим языком описания физического мира. Пропади математика, пропали бы большинство наук, торговля, транспорт, промышленность и средства связи.

Но возникает вопрос: почему математика, высший продукт человеческого ума, так великолепно приспособлена для описания Природы? И здесь я позволю себе заключительную завитушку, личный полет фантазии, представляющий собой чистую спекуляцию, не основанную на науке и поэтому совершенно лишенную всякой авторитетности. Это покажет, каким я на самом деле являюсь греком (древним, разумеется) и кантианцем в душе, несмотря на мои малодушные насмешки над их спекулятивными философиями. Здесь я намереваюсь быть более греком, чем сами греки, поглядеть, не являюсь ли я более кантианцем, чем сам Кант, и исследовать вопрос: а не существует ли глубокой связи между платоновским реализмом, кантианством и брауэровским интуиционизмом, а также гильбертовским формализмом?

В проблеме, с которой мы столкнулись, есть два главных момента. Один заключается в том, что математика есть внутренний продукт человеческого ума. Второй состоит в том, что математика оказывается удивительно хорошо приспособленной к описанию внешнего физического мира. Как это получается, что внутреннее так хорошо соответствует внешнему? Если мы примем кантианский взгляд на мозг, мы можем предположить, что он развивался таким способом, который наделил его способностью различать множества, соответствующие натуральным числам (в кантовских терминах, синтетическим a priori ) и представлять эти числа в трех измерениях в форме геометрии (синтетической a priori тоже, но только локально, поскольку мы знаем, что евклидова геометрия не справедлива на больших масштабах и вблизи массивных тел). Кант наших дней мог бы утверждать, что у нас возникает столько проблем с представлением иррациональных чисел и неевклидовой геометрии потому, что эти концепции не входят в программное обеспечение нашей нейронной сети, из-за некоего рода эволюционной адаптации к локальному окружению, и нам нужно прилагать реальные умственные усилия, чтобы созерцать их свойства.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Десять великих идей науки. Как устроен наш мир.»

Представляем Вашему вниманию похожие книги на «Десять великих идей науки. Как устроен наш мир.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Джеймс Чейз - Так устроен мир
Джеймс Чейз
Отзывы о книге «Десять великих идей науки. Как устроен наш мир.»

Обсуждение, отзывы о книге «Десять великих идей науки. Как устроен наш мир.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x