Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Здесь есть возможность читать онлайн «Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2006, Издательство: Центрполиграф, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Популярная физика. От архимедова рычага до квантовой механики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Популярная физика. От архимедова рычага до квантовой механики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Популярная физика. От архимедова рычага до квантовой механики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(Существует известная история о том, что Галилео доказал это, бросив два объекта различного веса с наклонной Пизанской башни, и они ударились о землю одновременно. К сожалению, это — только легенда. Историки совершенно уверены, что Галилео никогда не проводил такого эксперимента, но вот голландский ученый Симон Стевин (1548–1620) производил подобные измерения за несколько лет до экспериментов Галилео. В холодном мире науки, однако, осторожные и исчерпывающие эксперименты вроде тех, что проводил Галилео с наклонными плоскостями, иногда значат больше, чем некоторые сенсационные демонстрации.)

Все же можем ли мы действительно так легко расстаться с аристотелевскими представлениями о движении? Нет никаких сомнений в справедливости утверждения того, что скорости движения шаров по наклонной плоскости равны, но, с другой стороны, не менее справедлив и тот факт, что мыльный пузырь падает гораздо медленнее, чем шарик от пинг-понга того же самого размера, и что шарик от пинг-понга падает гораздо более медленно, чем твердый деревянный шар того же самого размера.

Однако этому имеется объяснение. Объекты не падают сквозь ничто, они падают сквозь воздух, и, чтобы падать, они должны, если можно так выразиться, «раздвинуть» воздух. Мы можем принять точку зрения, что процесс «раздвигания» воздуха занимает время. Тяжелое тело осуществляет сильный нажим и легко «раздвигает» воздух, «проталкивая» его мимо себя, и поэтому не теряет фактически никакого времени. Не имеет значения, сколько весит тело: один фунт или сотню фунтов. Однофунтовый вес испытывает такое малое сопротивление воздуха в процессе его «раздвигания», что вес в сотню фунтов едва ли может улучшить этот результат. Поэтому оба веса падают на равные расстояния за равное время [4] На самом деле имеется маленькая разница. Это не обнаруживается при падении с небольшой высоты, но становится видимым в случае, если оба веса были бы сброшены, например, с самолета. В этом случае более легкий вес был бы немного «придержан» и чуть-чуть бы отставал. . Действительно, легкое тело типа шарика для пинг-понга нажимает на воздух настолько мягко, что из-за этого испытывает значительное сопротивление в «раздвигании» воздуха на своем пути и поэтому падает медленно. По той же причине мыльный пузырь падает вообще еле заметно.

Можно ли использовать это объяснение «воздушного сопротивления» как соответствующее истине? Или это только выдумка, призванная объяснить неудачу обобщения Галилео для реальных условий жизни? К счастью, данный вопрос может быть проверен. Сначала предположите, что у вас есть два объекта равного веса, причем первый — сферический и компактный, а другой — широкий и плоский. Широкий плоский объект вступает в контакт с воздухом по более широкому фронту и, чтобы упасть, должен «раздвинуть» большее количество воздуха на своем пути. Поэтому он будет испытывать большее сопротивление воздуха, чем компактный сферический объект, и будет падать медленнее, несмотря на то что оба объекта имеют равный вес. Проверка показывает, что все верно. Действительно, если лист бумаги смят в шарик, то он падает быстрее, потому что он преодолевает меньшее сопротивление воздуха. Я упомянул этот эксперимент как один из тех, которые древние греки могли бы легко выполнить и благодаря которому они могли бы обнаружить, что что-то неладно с аристотелевским представлением о движении.

Еще более безошибочным тестом было бы избавиться от воздуха и позволить телам падать в вакууме. В среде, где отсутствует сопротивление воздуха, все тела, независимо от того, легкие они или тяжелые, должны падать на равные расстояния за равные промежутки времени. Галилео был убежден, что это так, но в его время проверить это было невозможно, так как не существовало способов создания вакуума. В позднейшие времена, когда вакуум уже научились создавать, эксперимент по совместному падению перышка и свинцовой глыбы, с целью подтверждения факта их одновременного приземления, стал достаточно заурядным. Таким образом, можно сказать, что сопротивление воздуха — вполне реальное явление, а не только средство спасения престижа.

Конечно, это поднимает вопрос, оправданно ли, ради изложения простого правила, описывать Вселенную в нереальных условиях? Правило Галилео о том, что все объекты любого веса падают на равные расстояния в равное время, может быть выражено в очень простой математической форме. Однако правило это истинно только в физическом вакууме, который фактически не существует. (Даже лучший вакуум, который мы можем создать, даже вакуум межзвездного пространства не является абсолютным.) С другой стороны, мнение Аристотеля о том, что более тяжелые объекты падают более быстро, чем легкие, — истинно, по крайней мере до некоторой степени, в реальном мире. Однако его нельзя привести к простому математическому выражению, поскольку скорость падения тел зависит не только от их веса, но также и от их формы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Популярная физика. От архимедова рычага до квантовой механики»

Представляем Вашему вниманию похожие книги на «Популярная физика. От архимедова рычага до квантовой механики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики»

Обсуждение, отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x