Со временем стало ясно, что существует не один» а несколько различных мезонов и что мезон Андерсона не является частицей обмена, о которой говорил Юкава. Названиям различных типов мезонов присвоили различные приставки (обычно буквы греческого алфавита), и обнаруженный Андерсоном мезон получил название мю-мезон, вскоре сокращенное до мюона.
В ходе изучения свойств мюона выяснилось, что мюон очень похож на электрон. Обе частицы обладали одинаковым зарядом: и у электрона, и у мюона частицей является разновидность с отрицательным зарядом, а античастицей — с положительным. Спин и магнитные свойства мюона и электрона также совпадали. Отличались лишь масса и устойчивость.
Действительно, у любого взаимодействия с участием электрона есть аналог с участием мюона. До своего распада мюон может даже заменять электроны в атомах, образуя мезоатом. В этом случае должен сохраняться угловой момент. Если мы воспользуемся старомодным представлением об электроне как о вращающейся вокруг ядра частице и заменим электрон на мюон, то у вращающегося с той же скоростью, что и электрон, мюона орбита должна быть ближе к ядру. Тогда большая масса мюона компенсируется меньшим радиусом обращения и угловой момент сохраняется (см. ч. I).
Так как мюон в 207 раз тяжелее электрона, расстояние от ядра до мюона должно составлять 1/ 207расстояния от ядра до электрона. Это означает, что в тяжелых атомах орбита мюона первого энергетического уровня должна быть внутри ядра! Тот факт, что мюон свободно вращается внутри ядра, доказывает, насколько мала тенденция мюона вступать во взаимодействие с протонами и нейтронами.
Расстояние между мезонными энергетическими уровнями таких мезоатомов намного больше, чем между электронными энергетическими уровнями обычных атомов. Вместо испускаемых и поглощаемых обычными атомами фотонов видимого света мезоатомы испускают и поглощают фотоны рентгеновских лучей.
Мюон является нестабильной частицей, превращающейся в электрон спустя примерно 2,2 с. Однако по субатомным меркам 2,2 с — это довольно долго, поэтому в этом плане мюон не очень-то и отличается от абсолютно стабильного электрона.
В общем, мюон — это не что иное, как «тяжелый электрон». Но почему тяжелый электрон настолько тяжелее обычного, да и почему он вообще существует, до сих пор неясно.
Хотя мюон и не оказался частицей Юкавы, ее все равно нужно было продолжать искать. В 1947 году английский физик Сесил Пауэлл (1903–1969) поместил в Андах (Боливия) фотопластинки и с их помощью обнаружил среди космических лучей следы мезонов. Эти мезоны были намного тяжелей мезонов Андерсона: их масса была в 273 раза больше массы электрона. Почти как у юкавских частиц.
Оказалось, что они активно взаимодействуют с атомными ядрами, как и должны себя вести юкавские частицы. Частица нового мезона несла положительный заряд, а античастица — отрицательный, как и частицы Юкавы. В конце концов удалось обнаружить и нейтральную разновидность этого мезона, масса которой была чуть ниже массы заряженных частиц (масса незаряженного мезона в 264 раза больше массы электрона).
Новый мезон получил название пи-мезон, или пион. Пион — это и есть та самая частица обмена, о которой говорил Юкава. Нейтроны и протоны состоят из облаков пионов, что было доказано в 1950-х годах Робертом Хофстедтером. Для этого ученый провел бомбардировку нейтронов и протонов электронами, разогнанными в линейном ускорителе до 600 Мэв. Рассеиваясь, электроны проходили сквозь протон, пробивая внешнее облако пионов [143] Подобные открытия заставляют задуматься, какие же из субатомных частиц являются элементарными, то есть не состоящими из еще более мелких и простых частиц. Да и существуют ли такие частицы вообще? Справедлив ли термин «элементарные частицы»? В настоящий момент физики не могут дать ответа на эти вопросы.
.
Спин пионов отличается от спина других частиц. Значение спина большинства частиц, о которых мы говорили выше, — нейтрино, электрона, мюона, протона и нейтрона, а также их античастиц — равно ½. Частицы с таким нецелочисленным спином ведут себя согласно статистике Ферми — Дирака (математическому анализу, проведенному Ферми и Дираком), почему и получили общее название ферм ионы. Главное отличительное свойство всех фермионов — подчинение правилу запрета (см. гл. 5).
Спин фотона равен 1, а гравитона — 2. Эти и другие частицы с целочисленным спином, включая атомные ядра ряда элементов, ведут себя согласно статистике Бозе — Эйнштейна, разработанной Эйнштейном и индийским физиком Бозе (1904–1974). Такие частицы называются бозонами. Бозоны не подчиняются принципу запрета.
Читать дальше