При фиксированной скорости полураспада количество атомов, распадающихся в грамме изотопа, обратно пропорционально массовому числу изотопа. Если изотоп тяжелее радия–226, то в одном его грамме содержится меньше атомов, и количество распадающихся в одном грамме атомов также будет меньше. Количество распадающихся атомов пропорционально M r/M i где M r— массовое число радия–226, а M i— массовое число данного изотопа.
Удельная радиоактивность (S H) радиоизотопа, т. е. количество распадающихся атомов в одном грамме за одну секунду, по сравнению с одним граммом радия, зависит от периодов полураспада и массовых чисел следующим образом:
S H= T rM r/T iM i. (Уравнение 10.7)
Так как период полураспада радия–226 равен 5,11∙10 10секундам, а его массовое число равно 226, числитель формулы 10.7 равен 226(5,11∙10 10) = 1,15∙10 13. Тогда:
S H= 1,15∙10 13/T iM i. (Уравнение 10.8)
Например, для углерода–14, с периодом полураспада 5770 лет, или 1,82∙10 –секунд, и массовым числом 14, значение T iM i равно 2,55∙10 12. Разделив 1,15∙10 13на 2,55∙10 12, получаем, что удельная радиоактивность углерода–14 равна 4,5 кюри на грамм. Период полураспада углерода–14 длине равен периода полураспада радия–226, соответственно скорость его распада ниже. С другой стороны, углерод–14 гораздо легче радия–226, значит, в одном грамме углерода–14 распадается больше атомов, и фактическое количество распадающихся атомов в одном грамме углерода–14 выше, чем в одном грамме радия–226, несмотря на более низкую скорость распада.
В целом у большинства используемых в лаборатории радиоизотопов периоды полураспада короче, а массовые числа меньше, чем у радия, поэтому удельная радиоактивность, как правило, очень высока.
Так, например, период полураспада углерода–11 20,5 минуты, или 1230 секунд, массовое число — 11 и удельная радиоактивность — 850 000 000 кюри на грамм.
Впрочем, эти радиоизотопы никогда не используются в граммах. Во-первых, такое их количество просто невозможно получить, а во-вторых, если даже это было бы возможно, оно слишком опасно. Кроме того, большие количества просто не нужны. При точном обнаружении частиц удобно использовать гораздо меньшие, чем 1 кюри, единицы, например милликюри ( 1/ 1000кюри) и микрокюри 1/ 1000000кюри). Один микрограмм углерода–11 равноценен 850 микрокюри.
Даже один микрокюри означает распад 36 000 атомов в секунду. На практике удается зафиксировать в лучшем случае распад четырех атомов в секунду, то есть 1/ 9000кюри, или 1,1∙10 10кюри.
В какой-то мере пользоваться кюри неудобно из-за того, что эта единица отражает распад большого и «нечетного» количества атомов в секунду. Поэтому была введена новая единица — резерфорд (названная так в честь создателя ядерной модели атома). Один резерфорл — это распад миллиона атомов в секунду.
Таким образом, в 1 кюри — 37 000 резерфордов, а в 1 резерфорде — 270 микрокюри.
Как только был открыт нейтрон, физики сразу решили использовать его в ядерных реакциях в качестве бомбардирующей частицы (что и привело к получению радиоизотопов в огромных количествах). Однако у нейтрона нет заряда, и он плохо подходил для этой роли, так как нейтрон невозможно ускорить при помощи магнитного поля, а ведь именно этот способ применяется во всех типах ускорителей частиц.
В 1935 году американский физик Роберт Оппенгеймер (1904–1967) нашел выход из сложившейся ситуации. Он предложил вместе нейтрона использовать дейтрон. Дейтрон состоит из относительно слабо связанных друг с другом протона и нейтрона. Дейтрон обладает электрическим зарядом (+1), значит, его можно ускорять. Когда разогнанный дейтрон подлетает к ядру-мишени, то положительно заряженное ядро начинает отталкивать протон дейтрона, иногда с достаточной силой, чтобы тот «оторвался» от нейтрона. Протон отлетает в сторону, однако нейтрон, поскольку силы отталкивания на него не действуют, продолжает лететь в сторону ядра и в случае попадания может к нему присоединиться. В результате происходит ( d, p)-реакция по типу, описанному в уравнениях 10.3 и 10.5.
Да, сами нейтроны ускорять нельзя, но это не так уж и важно. Более того, нейтрон, не притягиваемый и не отталкиваемый электрическим зарядом, попадет в ядро (в случае правильного прицеливания), даже если его кинетическая энергия очень мала.
В 1930-х годах ученые получали потоки нейтронов в результате бомбардировки атомов альфа-частицами. Смесь из источника альфа-частиц и бериллия служила очень удобным источником нейтронов.
Читать дальше