Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Здесь есть возможность читать онлайн «Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2006, Издательство: Центрполиграф, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Популярная физика. От архимедова рычага до квантовой механики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Популярная физика. От архимедова рычага до квантовой механики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Популярная физика. От архимедова рычага до квантовой механики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В 1927 году Гейзенберг выявил еще одно важное свойство волновой природы электрона (и частиц в целом). Дело в том, что если рассматривать частицу не как частицу, а как волну, то картинка получается гораздо более размытой. А так как все во Вселенной состоит из частиц, обладающих в том числе и свойствами волн, то и картина Вселенной также становится гораздо более размытой.

Местоположение любой частицы (или ее центра) в космосе можно определить с очень большой точностью, а вот точное местоположение волны определить уже гораздо сложнее.

Рассуждая над этим, Гейзенберг предположил, что невозможно одновременно точно определить и местоположение, и импульс частицы. Доводом ученого являлось то, что любая попытка точно определить местоположение частицы (любым технически возможным и невозможным способом) автоматически приводит к изменению скорости движения этой частицы и соответственно к изменению ее импульса, т. е. значение ее импульса станет более неопределенным. И наоборот, любая попытка точно измерить импульс частицы приведет к изменению ее местоположения, и местоположение будет более неопределенным. Чем выше точность измерения одной величины, тем выше погрешность изменения второй.

Кратко вышесказанное можно выразить следующей формулой:

(Δp)(Δx) = h, (Уравнение 6.2)

где Δp — погрешность измерения местоположения, Δx — погрешность измерения импульса; h — постоянная Планка (символ ≈ означает «приблизительно равно»). Эта формула получила название принцип неопределенности Гейзенберга.

С философской точки зрения Гейзенберг пришел к весьма неутешительным выводам, ведь еще со времен Ньютона ученые свято верили в науку, верили в то, что хотя бы теоретически измерения можно производить с абсолютной точностью. А тут выясняется, что на пути к абсолютному знанию стоит непреодолимая стена, стена, возведенная самим мирозданием. Конечно, это тяжелый удар для всего научного сообщества.

Даже сам Эйнштейн долго не мог примириться с неопределенностью, так как этот принцип ставил под сомнение существование причинно-следственных связей на субатомном уровне. Получается, что все в мире происходит случайно. Раз невозможно определить точное местоположение электрона, то как тогда подсчитать силу вероятного воздействия на него извне? «Я не могу поверить, — говорил Эйнштейн, — что Господь Бог играет со всем миром в кости».

И тем не менее Эйнштейну не удалось найти в принципе неопределенности каких-либо противоречий, а современная физика эту теорию полностью приняла.

Однако особых поводов для печали нет. Постоянная Планка очень мала, поэтому значением относительной неопределенности для тел, чьи размеры превышают размеры атома, можно пренебречь. Так что принцип неопределенности правит бал только лишь в субатомном мире.

Более того, принцип неопределенности вовсе не нанес науке никакого оскорбления. Даже наоборот, если во Вселенной существует пусть и очень малая, но приводящая к критическим последствиям доля неопределенности, следует отдать ученым дань за то, что они смогли ее обнаружить. Конечно же осознание пределов своего знания уже само по себе знание первостепенной важности.

Глава 7.

РАДИОАКТИВНОСТЬ

Уран

Итак, структура и свойства атома зависят в основном от количества электронов на его энергетических уровнях, а атомное ядро, диаметр которого колеблется в пределах от 10 –13до 10 –12см, является, казалось бы, крайне незначительной его частью. Если бы размеры атома увеличились до размеров Земли, то диаметр ядра такого атома составил бы всего около 210 метров.

И тем не менее масса ядра составляет более 99,9% от общей массы атома, и, несмотря на его малые размеры, ученые практически сразу определили, что атомное ядро также имеет внутреннюю структуру.

К обнаружению этой структуры привело открытие, сделанное французским физиком Антуаном Анри Беккерелем (1852–1908) в 1896 году. Именно в этом году было открыто рентгеновское излучение, и Беккерель, как и многие ученые того времени, активно изучал это явление.

Отец Беккереля (также известный физик) занимался изучением люминесцирующих материалов, т. е. веществ, которые поглощают свет определенной длины, а затем излучают уже более длинные волны [127] Под действием ультрафиолетового излучения флуоресцирующие вещества начинают ярко светиться. В темноте зрелище очень красивое. . Сам же Беккерель попытался выяснить, нет ли среди этих волн рентгеновских излучений.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Популярная физика. От архимедова рычага до квантовой механики»

Представляем Вашему вниманию похожие книги на «Популярная физика. От архимедова рычага до квантовой механики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики»

Обсуждение, отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x