Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Здесь есть возможность читать онлайн «Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2006, Издательство: Центрполиграф, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Популярная физика. От архимедова рычага до квантовой механики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Популярная физика. От архимедова рычага до квантовой механики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Популярная физика. От архимедова рычага до квантовой механики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Рентген получил свои лучи, направив катодный луч на стекло стенки катодной трубки. Электроны, проникая сквозь какой-либо объект, замедляются, и при достаточной толщине объекта они могут остановиться полностью. Согласно теории электромагнетизма Максвелла понижение скорости заряженных частиц приводит к возникновению электромагнитного излучения, в данном случае — рентгеновских лучей.

Понятно, что вещество, состоящее из более тяжелых атомов, будет эффективнее задерживать электроны, а рентгеновское излучение будет более интенсивным. Именно поэтому физики стали помещать металлическую пластину внутри катодной трубки непосредственно перед катодом. Электроны, попадая на эту пластину — антикатод («напротив катода»), тормозятся, и появляется мощное рентгеновское излучение. Такая трубка получила название рентгеновская.

В 1911 году английский физик Чарлз Баркла (1877–1944) обнаружил, что свойства получаемых рентгеновских лучей зависели от материала, из которого сделан антикатод, то есть определенный материал производил определенные группы лучей. Баркла мог судить о различиях этих групп лишь по их проникающей способности. Лучи одной группы могли проходить сквозь толстый материал, другой — сквозь более тонкие и т. д. Чем жестче рентгеновский луч, тем выше его проникающая способность. Впоследствии самые жесткие лучи стали называть лучами группы К, менее жесткие — группы L, М и т. д. Определенные материалы производят определенное, т. е. уникальное рентгеновское, излучение.

Жесткость лучей уникального излучения зависит от металла, из которого сделан антикатод. Чем выше атомный вес металла, тем «тверже» производимые им рентгеновские лучи. Стало очевидным, что если точно измерить их «твердость», то можно узнать много интересного об атомном ядре.

К сожалению, результаты измерения жесткости рентгеновских лучей по их проникающей способности были весьма приблизительными, нужно было что-то более точное. Ученые давно предполагали, что рентгеновские лучи являются частным случаем электромагнитного излучения (впрочем, когда Баркла анализировал результаты своих экспериментов, это еще не было доказано). Если это так, тогда чем короче длина рентгеновского луча, тем выше его энергия и проникающая способность. Таким образом, измерения длины волны (т. е. частоты) рентгеновских лучей дают возможность точно определить степень их жесткости.

Но как измерить длину волны? По идее для этого нужно использовать дифракционную решетку (см. ч. II). Дифракционная решетка — это экран с большим количеством параллельных щелей. Ширина щелей должна быть равна длине измеряемой волны. Длина рентгеновского луча намного меньше длины ультрафиолетового излучения, поэтому создать такую решетку практически невозможно.

В 1912 году немецкий физик Макс Лауэ (1879–1960) предложил для измерения длины волны рентгеновского излучения использовать кристаллы. Структура кристалла представляет собой расположенные рядами атомы, иначе говоря, кристалл является естественной дифракционной решеткой. Ни одна дифракционная решетка, созданная человеком, не обладает столь малой шириной щелей.

Расстояние между атомными ядрами, которые и будут разлагать пучки рентгеновских лучей в спектр так же, как щели обычной дифракционной решетки разлагают в спектр обычный свет, составляет около 10 –8см, что приблизительно и равно длине волны рентгеновского луча.

В опытах Лауэ пучок рентгеновских лучей, проходя сквозь кристалл сульфида цинка, падал на фотопластинку, оставляя вместо четкого отпечатка узор из нескольких точек. Значит, дифракция рентгеновских лучей действительно имела место, что и послужило доказательством волновой природы рентгеновского излучения.

В том же году два английских физика, Уильям Генри Брэгг и его сын, Уильям Лоренс Брэгг, развили идею Лауэ. Проанализировав поведение проходящих через кристалл рентгеновских лучей, они пришли к выводу, что угол отклонения лучей зависит от расстояния между атомами кристалла и от длины волны. Зная расстояние между атомами, можно определить длину волны.

Метод позволял высчитать длину волны рентгеновского луча с достаточной точностью. Спектр рентгеновского излучения, появляющегося при столкновении электронов с преградой, колеблется от 1 (нижняя граница диапазона ультрафиолетового излучения) до 0,01 миллимикрона (7 октав).

Атомные числа

Использование метода Брэгга давало возможность изучить уникальные рентгеновские излучения, о которых говорил Баркла, что и было сделано в 1913 году английским физиком Генри Гвином Джефрисом Мозли (1997–1915).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Популярная физика. От архимедова рычага до квантовой механики»

Представляем Вашему вниманию похожие книги на «Популярная физика. От архимедова рычага до квантовой механики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики»

Обсуждение, отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x