Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Здесь есть возможность читать онлайн «Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2006, Издательство: Центрполиграф, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Популярная физика. От архимедова рычага до квантовой механики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Популярная физика. От архимедова рычага до квантовой механики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Популярная физика. От архимедова рычага до квантовой механики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Если подключить вторую пару электродов к источнику электрических звуковых волн, то на экране появится кривая, отображающая параметры звуковой волны (впрочем, продольная звуковая волна на экране будет выглядеть аналогично поперечной, см. ч. I). Именно поэтому немецкий изобретатель Карл Фердинанд Браун (1850–1918) и назвал свое устройство осциллографом («рисующий волны»).

Электронно-лучевой осциллограф способен на гораздо большее. Представим, что напряжение второй пары электродов изменяется пошагово. Тогда, нарисовав на экране горизонтальную линию, электронный луч чуть поднимется и нарисует еще одну, потом еще и так далее. Таким образом, экран можно разделить на несколько сотен линий, и чем быстрее меняется напряжение, тем быстрее «бегает» электронный луч, то есть в секунду луч может пробежать по экрану несколько раз. Однако человеческий глаз будет видеть светящийся квадрат, хотя если придвинуться к экрану вплотную, то можно разглядеть, что квадрат состоит из многих горизонтальных линий, разделенных тонкими темными полосками. Эти полоски и отображают шаг изменения напряжения поднимающих электронный луч электродов.

По сути, это и есть телевизионная трубка. Чтобы на экране такой трубки появилась «картинка», нужно каким-либо способом регулировать интенсивность пуска электрона. Тогда на экране станут появляться более темные или более светлые точки, которые и формируют изображение.

Первым такой способ придумал русский физик Владимир Кузьмич Зворыкин (1888–1982). В 1938 году он изобрел иконоскоп (от греч., означает «картинка» и «смотреть»). Это устройство похоже на обычный фотоаппарат, только здесь вместо пленки используется пластина с большим количеством нанесенных на нее капель сплава цезия и серебра. Под действием света цезий отдает электроны, причем интенсивность электронной эмиссии прямо пропорциональна интенсивности светового излучения, чем выше интенсивность, тем меньше электронов, и наоборот. Таким образом, на пластине остается «электронный» рисунок попадающего через линзу изображения.

Этот рисунок можно воссоздать на экране лучевой трубки: чем больше электронов осталось в одной точке пластины, тем ярче эта точка будет светиться на экране. Если же изображение на экране сменяется достаточно быстро, то создается эффект движущейся картинки.

Электронно-лучевой осциллограф также является частью устройства, использующего электромагнитные волны для определения расстояния до каких-либо объектов (аналогично применению звуковых волн в эхолокации).

Электромагнитные волны распространяются с точно известной скоростью — 300 000 километров в секунду. Если же электромагнитный импульс столкнется с преградой, то он, отражаясь от нее, вернется назад к источнику электромагнитного излучения. Остается лишь регулировать частоту волны: для проникновения сквозь туман, дождь и облачность необходимы волны более низкой частоты, а для более эффективного отражения от препятствий — более высокой. Идеальной является волна микроволнового диапазона, длиной от 0,5 до 100 см.

Зная скорость распространения волны и время, за которое сигнал долетел до препятствия и вернулся назад, можно определить расстояние до объекта. А по самому сильному отраженному сигналу можно определить направление.

Над разработкой подобного устройства работало сразу несколько ученых, но создать его первым удалось шотландскому физику Роберту Александру Вагсон-Ватту (1992–1972). Благодаря его прибору уже в 1935 году стало возможным отслеживать движение самолета по отражению микроволновых волн от его обшивки. Система получила название «радиообнаружение и определение дальности». По-английски система сокращенно называется радар.

Микроволновый импульс радара отклоняет луч осциллографа так, что на экране вместо горизонтальной линии появляется «клин» — эхо-сигнал, мощности намного меньшей мощности изначального импульса, так как возвращается лишь часть отраженных электронов, остальные разлетаются в разные стороны, отображается в виде меньшего по размерам клина. Так как электронный луч перемещается из стороны в сторону с огромной скоростью, то даже за те доли миллисекунды, которые необходимы для возвращения сигнала, между импульсом и эхо-сигналом образуется зазор. Именно по величине этого зазора возможно судить о расстоянии до объекта.

Можно поступить иначе, сконструировав специальную вращающуюся вокруг своей оси радарную антенну. Антенна будет принимать и усиливать слабые эхо-сигналы, а электронный луч вслед за вращением антенны рисовать на экране осциллографа линию от центра к краю экрана. Появляющиеся на экране яркие точки и будут отраженными от объектов эхо-сигналами. Тогда по расстоянию от точки до центра экрана можно будет судить о расстоянии до объекта, а по местоположению точки на экране — определить направление. При следующем обороте антенны вращающаяся линия «сотрет» все точки на экране и отобразит новые. Если использовать люминофор с более длительным свечением, то на экране появится грубое схематическое изображение длинных объектов. А если установить такой радар на самолет, то на экране появится приблизительная карта местности, так как электромагнитные волны отражает и земля, и вода, и листья, и бетон.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Популярная физика. От архимедова рычага до квантовой механики»

Представляем Вашему вниманию похожие книги на «Популярная физика. От архимедова рычага до квантовой механики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики»

Обсуждение, отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x