Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики

Здесь есть возможность читать онлайн «Айзек Азимов - Популярная физика. От архимедова рычага до квантовой механики» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: М., Год выпуска: 2006, Издательство: Центрполиграф, Жанр: Физика, sci_popular, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Популярная физика. От архимедова рычага до квантовой механики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Популярная физика. От архимедова рычага до квантовой механики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.

Популярная физика. От архимедова рычага до квантовой механики — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Популярная физика. От архимедова рычага до квантовой механики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Это стало последней тростинкой, перевесившей чашу весов. Если катодные лучи отклоняются под воздействием и электростатического, и магнитного полей, значит, эти лучи являются потоком частиц, и, судя по направлению отклонения, они несут отрицательный заряд.

Стало ясно, что это и есть электрические частицы, может быть, те самые невидимые частицы, о которых говорил один из физиков (см. гл. 2). Они вошли в научный мир под именем, которое им дал Стоуни, — электроны, а 1897 год вошел в историю как год открытия электрона.

Но Томсон не только открыл электрон, но и определил самые важные его свойства.

Под действием магнитного поля прямолинейная траектория движения электрона меняется на криволинейную. (Так, например, Луна под действием гравитационного поля Земли изменяет свое движение с прямолинейного на криволинейное вокруг Земли.)

Траектория движения электрона отклоняется под действием магнитной силы. Величина этой силы прямо пропорциональна силе магнитного поля (H), величине электрического заряда (e) и скорости движения (v) электрона. Именно эта скорость и определяет, сколько линий магнитного поля электрон пересечет. (На электрон в состоянии покоя или двигающийся параллельно этим линия магнитное поле не действует.) Таким образом, отклоняющая сила равна Hev.

При криволинейной траектории полета электрона на него также действует центробежная сила. Ее величина вычисляется по формуле mv 2/r, где m масса электрона, v — его скорость, а r — радиус кривой, по которой он перемещается.

При криволинейной траектории движения электрона между силой магнитного поля и центробежной силой существует баланс. Если же баланса нет, то траектория будет увеличиваться и уменьшаться, пока электрон не найдет траекторию, где обе силы находятся в равновесии. Для реальной траектории справедлива следующая формула:

Hev = mv 2/r . (Уравнение 3.1)

Формулу можно упростить и представить в виде:

e/m = v/Hr. (Уравнение 3.2)

Сила магнитного поля известна, радиус кривизны частиц катодного луча можно легко определить по изменению положения светящегося пятна на стенке катодно-лучевой трубки. Теперь осталось лишь определить величину скорости v, чтобы высчитать отношение заряда электрона к его массе e/m.

Подвергнув катодные лучи воздействию и магнитного и элекростатического полей одновременно, Томпсону удалось определить скорость движения электрона. Дело в том, что эти поля отклоняют катодный луч в противоположных направлениях и таким образом уравновешивают друг друга. Степень отклонения, возникающего под действием электростатического поля, зависит от силы поля (F) и величины заряда электрона (e) и не зависит от скорости электрона, так как разноименно заряженные частицы притягивают друг друга даже в состоянии покоя.

Таким образом, приравняв действие на электрон одного поля к действию другого, получим:

Hev = Fe (Уравнение 3.3)

или

v = F/H. (Уравнение 3.4)

Силы полей ученые определили довольно легко и получили, что v равна приблизительно 30 000 км/с, то есть примерно одной десятой скорости света. Скорость электрона была самой большой скоростью материального объекта из измеренных учеными на тот период, и именно огромная скорость частиц, вылетающих из катодной трубки, объяснила, почему гравитационное поле на катодные лучи практически не действует.

Зная v, Томпсон по формуле 3.2 определил соотношение e/m. Как ни удивительно, но значение e/m электрона оказалось намного больше, чем у иона (ионы ведь тоже заряженные частицы).

Возьмем ионы Н +, Na +и К +. Размер заряда у всех трех одинаков, так как для получения одного грамм-атома каждого из этих элементов достаточно тока в 1 фарадей. Но масса иона калия в 39 раз больше, чем водорода, а масса атома натрия в 23 больше массы атома водорода. Если значение e одинаково, то чем меньше m, тем больше значение e/m. Т. е. у Н +значение e/m будет в 23 раза больше, чем у Na +, и в 39 раз больше, чем у К +.

Действительно, так как ион водорода — самый легкий из всех известных элементов, то соотношение e/m у него должно быть самое большое. И тем не менее значение соотношения e/m иона водорода (по современным данным) в 1836 раз меньше, чем значение e/m электрона.

Так как ион водорода несет самый маленький электрический заряд, логично предположить, что и электрон несет самый маленький заряд. А раз соотношение e/m у электрона в 1836 раз больше, чем у иона, значит, все дело в массе, то есть масса электрона в 1836 раз меньше, чем масса иона водорода.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Популярная физика. От архимедова рычага до квантовой механики»

Представляем Вашему вниманию похожие книги на «Популярная физика. От архимедова рычага до квантовой механики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики»

Обсуждение, отзывы о книге «Популярная физика. От архимедова рычага до квантовой механики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x