Поэтому, если в цепи присутствуют и емкостное, и индуктивное сопротивления, действие одного оказывается противоположным действию другого. «Ускорение» емкостного сопротивления накладывается на «запаздывание» сопротивления индуктивного. Общее сопротивление в этом случае будет выражаться так:
Z = √(R 2+ (X L– X C) 2). (Уравнение 13.6)
Если цепь составлена таким образом, что емкостное сопротивление равно индуктивному сопротивлению, X L – X C= 0 и Z = √R 2= R. Общее сопротивление цепи с переменным током в этом случае не больше, чем обычное сопротивление аналогичной цепи с постоянным током. Такая цепь носит название «резонансный контур». Обратите внимание, что импеданс никогда не может быть меньше сопротивления. Если емкостное сопротивление больше, чем индуктивное, то X L – Х с является отрицательной величиной, но его квадрат — величина положительная, и если взять квадратный корень от суммы, то окончательное значение Z будет больше, чем R.
Это только самое начало усложнений, которые привносит в электрические цепи переменный ток. Большую часть полного знания о цепях переменного тока получил в начале XX века немецко-американский инженер-электрик Чарльз Протеус Штайнмец (1865–1923), и только после этого стало возможным широкое использование переменного тока.
Еще до того как Штайнмец рационализировал использование переменного тока, и несмотря на огромные трудности, которые стояли на пути электриков в отсутствие этих знаний, а также несмотря на огромное сопротивление таких людей, как, например, Эдисон и Кельвин, борьба за применение переменного тока была выиграна. Причиной тому стало соображение, что переменный ток намного превосходил постоянный в отношении передачи его на большие расстояния.
Мощность электрического тока измеряется в ваттах и равняется разности потенциалов (в вольтах), умноженной на амперы силы тока. (Строго говоря, это так только в отсутствие сопротивления. Если присутствует индуктивное сопротивление, то мощность уменьшается на специальный фактор мощности. Однако это уменьшение можно сократить или вообще устранить путем введения соответствующего емкостного сопротивления, поэтому нас этот вопрос беспокоить не должен.)
Это означает, что ток одной и той же мощности может порождаться различными сочетаниями вольтов и амперов. Например, через некое устройство может пропускаться I ампер при 120 вольтах, или 2 ампера при 60 вольтах, или 5 ампер при 24 вольтах, или 12 ампер при 10 вольтах. Мощность во всех случаях будет одной и той же — 120 ватт.
В некоторых случаях выгоднее, чтобы ток заданной мощности появлялся при большом количестве вольт и малом — ампер, в других — наоборот. В последнем случае низкая разность потенциалов уменьшает риск пробоя изоляции или получения короткого замыкания.
И остается уже упомянутая проблема передачи электроэнергии на большие расстояния. Большая часть преимуществ использования электроэнергии была бы потеряна, если бы ее можно было использовать только поблизости от генератора.
Поскольку если ток посылать по проводам на далекие расстояния, то на нагрев проводов уйдет столько энергии, что либо до адресата дойдет ее слишком мало, либо потери придется сокращать за счет утолщения проводов до такой степени, что они станут слишком дорогими.
Как известно, выделение тепла пропорционально квадрату силы тока. Следовательно, если снизить силу тока до очень малой величины, увеличивая в то же время разность потенциалов для того, чтобы электрическая мощность оставалась неизменной, то на нагрев проводов будет тратиться гораздо меньше энергии.
Естественно, маловероятно, что это сочетание высокого напряжения и малой силы тока будет годиться для применения в обычных электрических устройствах. Следовательно, нам нужна ситуация, где одна и та же мощность будет при очень большом напряжении в момент передачи и при малом — в момент использования.
В случае с постоянным током совершенно нерационально пытаться изменить разность потенциалов тока — то вверх, то вниз — для сиюминутных нужд. Однако что касается переменного тока, с ним это несложно проделать с помощью трансформатора (устройства, трансформирующего (изменяющего) отношение силы тока к напряжению). В сущности, в 1831 году Фарадей изобрел именно трансформатор, когда, пытаясь получить индуцированный ток, принялся экспериментировать с железным кольцом и двумя катушками проволоки.
Читать дальше