Соленоид ведет себя так, как будто это магнитный брусок, сделанный из воздуха. Это подтверждает предположение о том, что в обычных магнитных брусках происходит то же, что и в проволоке, скрученной петлями, по которой пропущен ток. Однако до XX века оно пребывало не более чем предположением. Лишь после того как существование электрона и его место в атоме уже были хорошо изучены, обычные магнитные явления стали объяснять вращением электронных зарядов внутри атомов. В некоторых случаях электронные вращения внутри атомов могут быть уравновешены, поскольку одни вращаются по часовой стрелке, а другие — против часовой стрелки, так что результирующей магнитной силы наблюдаться не будет. В других случаях, особенно это касается железа, вращения не уравновешены и магнитная сила может стать очевидной, если сами атомы выровнены соответствующим образом.
Таким образом, появляется возможность объяснить магнетизм Земли. Даже если допустить, что жидкое железо Земли имеет температуру выше точки Кюри (см. гл. 9) и не может быть обычным магнитом, тем не менее возможно, что вращение Земли создает в этой жидкой магнитной системе медленное вихревое движение с электрическим зарядом и что ядро Земли ведет себя скорее как соленоид, нежели как магнитный брусок. Эффект получается одинаковый.
Если это так, то планета, не обладающая жидким ядром, в котором могли бы возникнуть завихрения, или вращающаяся недостаточно быстро, чтобы привести вихри в движение, не будет обладать значительным магнитным полем (если вообще будет им обладать). Факты, собранные в результате современных опытов с ракетами, кажется, подтверждают это. Плотность Луны составляет всего 3/ 5от плотности Земли, и это заставляет полагать, что на Луне нет плотного жидкого железного ядра значительного размера, — и исследования Луны ясно показали, что сколь-либо значимого магнитного поля она не имеет.
Венера же, напротив, очень похожа на Землю в отношении размера и плотности, и, вероятно, на этой планете имеется жидкое железное ядро. Однако астрономические данные, полученные в 1960-х годах, показали, что Венера вращается медленнее, приблизительно один раз в 200 с лишним дней. И на Венере тоже, по данным, полученным с «Маринера II» (аппарата-исследователя Венеры), значимое магнитное поле отсутствует.
Юпитер и Сатурн, которые намного больше Земли, тем не менее вращаются быстрее и обладают значительно большими магнитными полями, чем Земля.
Солнце представляет собой сплошь текучую среду, скорее газообразную, чем жидкую, а в результате вращения в его магнитной системе, бесспорно, присутствуют вихри. Возможно, что именно такие вихри объясняют наличие магнитного поля у Солнца, особенно учитывая «пятна» на нем. У некоторых звезд обнаружены гораздо более сильные магнитные поля, чем у Солнца, а что касается галактик, считается, что магнитные поля галактик имеют размеры, сопоставимые с размером самих галактик.
Применение электромагнетизма
Силу магнитного поля внутри соленоида можно увеличить, поместив в спираль железный брусок. Высокая проницаемость железа (см. гл. 9) будет способствовать концентрации и без того близко расположенных друг к другу магнитных линий. Первым, кто поставил этот опыт, стал англичанин Уильям Стёрджен (1783–1850), который в 1823 году 18 раз обернул неизолированную медную проволоку вокруг бруска U-образной формы и изобрел электромагнит. Пустив электрический ток, Стёрджен убедился, что его электромагнит способен поднять вес в 20 раз больше собственного. В отсутствие тока это устройство теряло магнитные свойства и не могло ничего поднять.
Однако электромагнит стал таким, какой он сейчас, только благодаря американскому физику Джозефу Генри (1797–1878). В 1829 году он повторил эксперимент Стёрджена, но использовал изолированную проволоку. Теперь витки можно было располагать вплотную друг к другу, не опасаясь коротких замыканий. Следовательно, Генри мог сотни раз обернуть даже недлинную проволоку вокруг железного бруска, сильно увеличивая таким образом отношение N/L (см. уравнение 12.1) и усиливая мощь магнитного поля при заданной силе тока. В 1831 году ученый изготовил небольшой электромагнит, который мог поднять более тонны железа.
Электромагнитные явления сделали возможным создание магнитных полей огромной силы. Игрушечный магнит-подкова мог создать магнитное поле с силой в несколько сотен гауссов, средний магнит-брусок — в 3000 гауссов, а мощный — в 10 000 гауссов. А с помощью электромагнитов вполне доступно создание магнитных полей силой 60 000 гауссов.
Читать дальше