«На самом деле это не имеет значения. Вывод справедлив для любых вариантов программ. Смотри, мои рассуждения с вариантом синий, синий, красный опирались только на тот факт, что два цвета в программе одинаковы, так что мой вывод справедлив для любого варианта программы с двумя одинаковыми цветами: красный, красный, синий или красный, синий, красный и т. д. В любом варианте будет как минимум два одинаковых цвета; иной исход будет лишь в случае, когда все три цвета одинаковы — красный, красный, красный или синий, синий, синий . Но в последнем случае мы всегда увидим одинаковый цвет, какие бы дверцы мы ни выбрали, так что процент совпадений только увеличится. Итак, если твоё объяснение верно и коробочки запрограммированы — пусть даже каждая пара коробочек с одинаковыми номерами запрограммирована по-своему — то мы должны увидеть одинаковые цвета более чем в 50% случаев».
Таковы аргументы. Трудная часть наших рассуждений позади. Суть в том, что существует тест, позволяющий установить, права ли Скалли и действует ли каждый шарик в соответствии с программой, которая однозначно определяет, какой вспыхнет свет в зависимости от того, какая дверка откроется. Скалли с Малдером осталось лишь провести сам эксперимент: случайным образом и независимо друг от друга открывать по одной из дверок в каждой паре коробочек с одинаковыми номерами и записывать цвет шариков. Затем им надо будет сравнить свои записи и установить, совпали ли их результаты более чем в 50% случаев.
В следующем разделе мы увидим, что «на языке шариков» Малдер предложил провести то же самое, что и Джон Белл на языке физики.
Полученный результат прямо переносится на физику. Представим, что у нас есть два детектора, один — в левой части лаборатории, а второй — в правой; эти детекторы измеряют спин попадающих в них скоррелированных частиц вроде электронов, как в эксперименте, обсуждавшемся в предпоследнем разделе. Перед измерением требуется выбрать ось (вертикальную, горизонтальную или любую другую), относительно которой будет определяться спин; ради простоты предположим, что нам попался детектор, купленный по дешёвке на распродаже, который может измерять спин относительно только трёх осей. При каждом измерении мы будем определять направление спина электрона относительно выбранной оси: по или против часовой стрелки.
Согласно Эйнштейну, Подольскому и Розену, каждый электрон попадает в детектор уже как бы запрограммированным, так что он имеет определённое значение спина относительно каждой из трёх осей ещё до измерения, а само измерение только определяет этот спин. Например, электрон, вращающийся по часовой стрелке относительно каждой из трёх осей, имеет программу «по, по, по» относительно часовой стрелки; электрон, вращающийся по часовой стрелке относительно первых двух осей и против часовой стрелки относительно третьей, имеет программу «по, по, против» относительно часовой стрелки и т. д. Для того чтобы объяснить корреляцию между двигающимся влево электроном и двигающимся вправо электроном, Эйнштейн, Подольский и Розен просто говорят, что скоррелированные электроны имеют идентичные спины и поэтому доставляют к детекторам, которые измеряют спины, идентичные программы. Поэтому если для измерения спина выбраны одинаковые оси в левом и в правом детекторе, то детекторы дадут и одинаковые результаты.
Отметим, что наш эксперимент полностью воспроизводит ситуацию, с которой столкнулись Скалли и Малдер, но с простой заменой: вместо выбора дверки в титановой коробочке мы выбираем ось; вместо того чтобы видеть красный или синий цвет, мы регистрируем направление спина — по или против часовой стрелки. Далее, точно так же, как, открывая одинаковые дверки в титановых коробочках с одинаковыми номерами, мы видим одинаковый цвет, так и, выбирая одинаковые оси на обоих детекторах при измерении спина пары скоррелированных электронов, мы получаем одинаковый спин. Наконец, подобно тому как, открывая какую-либо дверцу титановой коробочки, мы лишаем себя возможности узнать, какой цвет мы бы увидели, если бы выбрали другую дверку, так и измерение спина относительно какой-либо оси лишает нас возможности узнать (в силу квантовой неопределённости), какой спин мы бы зарегистрировали, если бы выбрали другую ось.
И весь приведённый выше анализ Малдера для определения, кто прав в вопросе с шариками инопланетян, равным образом применим и к эксперименту с определением спина электронов. Если правы ЭПР, и каждый электрон действительно имеет определённый спин относительно всех трёх осей (если каждый электрон заранее «запрограммирован» на определённый результат при измерении спина относительно каждого из направлений), тогда можно сделать следующее предсказание. Измерив спин достаточно большого количества пар идентичных электронов относительно случайно выбираемых осей, мы получим, что более чем в половине случаев электроны имеют одинаковый спин . Если это не так, то Эйнштейн, Подольский и Розен не правы.
Читать дальше