Сколь велик этот шанс? Я не знаю, и никто не знает. Моя интуиция говорит мне, что это маловероятно, но моя интуиция основывается на полутора десятилетиях исследований в рамках традиционной концепции струн и дополнительных измерений порядка планковской длины. Возможно, мои инстинкты притупились. К счастью, вопрос будет решён без оглядки на чью-либо интуицию. Если струны достаточно крупные или некоторые из дополнительных измерений достаточно большие, то результаты грядущих экспериментов будут впечатляющими.
В следующей главе мы рассмотрим целый ряд экспериментов, в которых, среди прочего, будет проверена возможность существования относительно крупных струн и дополнительных измерений, так что пока что я лишь разожгу ваш аппетит. Если струны достигают миллиардной от миллиардной доли метра (10 −18м), то частицы, соответствующие более высоким колебательным модам (рис. 12.4), уже не будут иметь грандиозных масс, превышающих планковскую массу, как в стандартном сценарии. Их массы будут лишь в 100–1000 раз превосходить массу протона, и это уже попадает в предел достижимости построенного недавно в ЦЕРНе Большого адронного коллайдера (Large Hadron Collider — LHC). Если эти колебательные моды струн будут возбуждены в результате высокоэнергетических столкновений, то детекторы ускорителя вспыхнут огнями, как хрустальный шар на Таймс-Сквер в канун Нового года. Будет обнаружен целый букет невиданных ранее частиц, причём их массы будут связаны друг с другом, как различные гармоники одной виолончели. Под полученными данными появится такая размашистая подпись теории струн, которая впечатлила бы даже Джона Хэнкока [83]. Исследователи не смогут пропустить это, даже если забудут надеть свои очки.
Более того, если верен сценарий мира на бране, то высокоэнергетические столкновения могут даже создавать (только вообразите!) миниатюрные чёрные дыры. Хотя мы обычно думаем о чёрных дырах как о гигантских объектах в далёком космосе, но ещё со времён создания общей теории относительности стало известно, что если сжать с достаточной силой горстку материи, то возникнет миниатюрная чёрная дыра. Это не происходит из-за того, что никто (и никакое механическое устройство) даже отдалённо не может приблизиться к тому, чтобы вызвать достаточно большую силу сжатия. Единственно приемлемый механизм создания чёрных дыр включает в себя гравитационное притяжение чудовищно массивной звезды, преодолевающее направленное наружу давление, вызываемое процессами ядерного синтеза внутри неё, что и вызывает коллапс звезды. Но если сила гравитации на микроскопических масштабах гораздо больше, чем думали раньше, то микроскопические чёрные дыры могут быть порождены с помощью существенно меньшей силы сжатия, чем это представлялось. Расчёты показывают, что у Большого адронного коллайдера может хватить мощности, чтобы породить изобилие микроскопических чёрных дыр путём высокоэнергетических столкновений протонов. {178} Подумайте над тем, сколь ошеломительным это могло бы быть. Большой адронный коллайдер мог бы превратиться в фабрику по производству микроскопических чёрных дыр! Эти чёрные дыры были бы столь малы и исчезали бы за столь короткое время, что не представляли бы для нас ни малейшей угрозы (уже довольно давно Стивен Хокинг показал, что все чёрные дыры распадаются в результате квантовых процессов: крупные чёрные дыры очень медленно, а миниатюрные — очень быстро), но их порождение подтвердило бы одну из самых экзотических идей, выдвинутых когда-либо.
Первой целью современных исследований, проводимых учёными во всём мире (включая меня), является осмысление космологии с учётом новых достижений теории струн / M-теории. Причина ясна: космология не только имеет дело с глобальными вопросами мироздания, и момент рождения Вселенной не только определяет многие элементы нашего повседневного опыта (такие как стрела времени), но и служит теоретикам тем, чем Нью-Йорк послужил Синатре [84]: первоклассной испытательной площадкой. Если теория заработает в экстремальных условиях, характеризующих самые ранние моменты существования Вселенной, то она сможет сделать это везде.
В настоящее время ведутся разработки космологии согласно теории струн / M-теории, причём исследователи идут в двух основных направлениях. В первом и более традиционном подходе предполагается, что подобно тому как инфляционная теория описывает краткий, но важный период, предшествовавший периоду, описываемому стандартной теорией Большого взрыва, так и теория струн / M-теория может описывать ещё более ранний и, возможно, ещё более важный период, предшествовавший инфляции. Здесь можно надеяться на то, что теория струн / M-теория избавит нас от неуклюжих заплаток, использованных нами, чтобы покрыть своё неведение о самых ранних моментах рождения Вселенной, а затем космологическая драма будет развёртываться согласно необычайно успешному сценарию инфляционной теории, изложенному в предыдущих главах.
Читать дальше