Общая теория относительности обеспечивает такую интерпретацию. В этой теории Эйнштейн выяснил, что пространство и время являются подвижными и растяжимыми, а не жёсткими и раз и навсегда фиксированными; и он дал уравнения, которые точно говорят, как пространство и время откликаются на присутствие материи и энергии. В 1920-е гг. русский математик и метеоролог Александр Фридман и бельгийский священник и астроном Жорж Леметр независимо проанализировали уравнения Эйнштейна применительно ко всей Вселенной, и оба нашли нечто поразительное. Точно так же, как из-за гравитационного притяжения Земли бейсбольный мяч, запущенный кетчером свечой вверх, должен либо двигаться вверх, либо падать вниз, но, определённо, не может стоять на месте (исключая одно мгновение, когда он достигает своей высшей точки), так и Фридман и Леметр обнаружили, что из-за гравитационного притяжения материи и излучения, распространяющегося по всему космосу, ткань пространства должна либо растягиваться, либо сжиматься, но что она не может сохранять фиксированного размера. Фактически, это один из редких примеров, в которых метафора схватывает не только суть физики, но также и её математическое содержание, поскольку, как оказалось, уравнения, управляющие высотой полёта бейсбольного мяча над землёй, почти идентичны уравнениям Эйнштейна, управляющим размером Вселенной. {106}
Подвижность пространства в общей теории относительности даёт способ для глубокого объяснения открытия Хаббла. Вместо того чтобы объяснять разбегание галактик космической версией взрыва на заводе, общая теория относительности говорит, что в течение миллиардов лет пространство растягивается. И по мере разбухания пространство растаскивает галактики друг от друга, подобно тому как чёрные пятнышки на посыпанном маком пироге удаляются друг от друга, когда тесто поднимается в печи. Так что причина движения галактик в разные стороны не во взрыве, который имел место внутри пространства. Нет, движение в разные стороны возникает из непрекращающегося растяжения самого пространства.
Чтобы лучше ухватить эту ключевую идею, подумаем также о чрезвычайно полезной модели расширяющейся Вселенной в виде воздушного шара, которую часто используют физики (аналогия, столь же давняя, как весёлая карикатура, которую вы можете увидеть в примечании {107} и которая появилась в голландской газете в 1930 г. после интервью с Виллемом де Ситтером, учёным, который внёс большой вклад в космологию). Эта аналогия уподобляет наше трёхмерное пространство двумерной поверхности сферического воздушного шара (как на рис. 8.2 а ), который раздувается до всё большего и большего размера. Галактики представлены многочисленными равномерно распределёнными монетками пенни с портретом Линкольна, приклеенными к поверхности шара. Так как шар раздувается, все монетки удаляются друг от друга, обеспечивая простую аналогию того, как расширяющееся пространство разносит галактики.
Рис. 8.2.( а ) Если равномерно распределённые монетки приклеены к поверхности сферы, вид, который увидит один Линкольн, изображённый на монетке, будет таким же, который увидит любой другой. Это соответствует тому, что вид из любой галактики во Вселенной в среднем будет таким же, как из любой другой. ( б ) Если сфера раздувается, расстояния между всеми монетками увеличиваются. Более того, чем дальше монетки друг от друга разнесены на ( а ), тем больше увеличится между ними расстояние на ( б ). Это хорошо согласуется с измерениями, которые показывают, что чем более удалена от данной точки отсчёта галактика, тем быстрее она удаляется от этой точки. Отметим, что ни одна монетка не была выделена как специальная, что также согласуется с нашей уверенностью, что во Вселенной ни одна галактика не является как-то выделенной или центром расширения пространства
Важная особенность этой модели состоит в том, что имеется полная симметрия монеток, поскольку вид, который наблюдает какой-либо отдельно взятый Линкольн, будет таким же, как и вид, который наблюдает любой другой Линкольн. Чтобы показать это, представьте, что вы уменьшились, попали на монетку и обозреваете все направления вдоль поверхности шара (вспомним, что в этой аналогии поверхность шара представляет всё пространство, так что взгляд не вдоль поверхности шара лишён смысла). Что вы будете видеть? Конечно, вы увидите монетки, удаляющиеся от вас во всех направлениях, так как шар раздувается. А если вы перейдёте на другую монетку, что вы будете наблюдать? Симметрия гарантирует, что вы будете видеть то же самое: монетки, разбегающиеся во всех направлениях. Этот осязаемый образ хорошо подкрепляет наши убеждения — при поддержке всё более точных астрономических исследований, — что наблюдатель в любой из более чем 100 млрд галактик Вселенной, вглядывающийся в своё ночное небо через мощный телескоп, будет в среднем видеть образ, сходный с тем, что видим мы: окружающие галактики, удаляющиеся прочь во всех направлениях.
Читать дальше